958
K. R. Reddy et al.
LETTER
Table 1 Synthesis of 1,2,3-Triazole from Phenylacetylene and
ever, in all the above cases utilization of Cu(II) salts for
the activation of terminal alkynes is not fully focused. To
probe further on the nature of the metal ion in solution, we
have recorded the electronic spectra before and after the
reaction and the spectral features clearly indicate no
change in formal oxidation state of the metal ion.
Moreover, the aqueous phase after extraction with ethyl
acetate is still active for further recycling experiments.
We observed no loss in activity even after two cycles.
These results clearly indicate that the activity is associated
with Cu(OAc)2. Further studies on the influence of
counter ions on the activation of alkynes are under inves-
tigation.
Benzyl Azide with Different Copper Sources in Watera
Entry Copper source
Yield (%)b Ratio of 1,4-:1,5-isomers
1
2
3
4
5
6
None (control)
CuI
20
100
100
5
91:9
100:0
100:0
28:72
100:0
100:0
CuBr
CuCl2
Cu(NO3)2·3H2O
Cu(OAc)2·H2O
13
77
a Reaction conditions: phenylacetylene (1.2 mmol), benzyl azide
(1 mmol), Catalyst (20 mol%), H2O (3 mL).
In conclusion, we have shown a simple protocol for the
synthesis of 1,4-disubstituted 1,2,3-triazoles in an en-
vironmentally benign solvent with copper(II) acetate
under ambient conditions in high yields.
b NMR yields based on benzyl azide starting material.
In the majority of reported procedures, activation of
terminal alkynes is achieved by the formation of Cu-
acetylide with the main catalyst precursor as a Cu(I) salt.
However, there is some precedent in the literature where
the nature of the Cu(II) salts do effect the activation of ter-
minal alkynes. For example, Yamamoto and co-workers
recently reported that the activity of CuBr2 and CuCl2 are
comparable to CuBr in the synthesis of glycinate-tethered
a,w-enynes, whereas, Cu(OAc)2 and CuI proved to be in-
effective.13 Similarly, simple Cu(ClO4)2 and oxazoline
ligand combination is utilized for the coupling of terminal
alkynes with nitrones.14
Acknowledgment
We wish to thank the CSIR for financial support under the Task
Force Project CMM-0005 and K.R thanks UGC for a Junior
Research Fellowship.
References and Notes
(1) Sheldon, R. A. Green Chem. 2005, 7, 267.
(2) Cornils, B.; Herrmann, W. A. Aqueous Phase
Organometallic Catalysis – Concepts and Applications;
Wiley-VCH: Weinheim, 1998.
Recently, Alper and co-workers also observed slightly
lower activity of Cu(OAc)2 with respect to Cu(I) salts for
the synthesis of propargylamines in ionic liquids.15 How-
(3) (a) Leitner, W. Top. Curr. Chem. 1999, 206, 107.
(b) Leitner, W. Acc. Chem. Res. 2002, 35, 746.
(c) Beckman, E. J. J. Supercrit. Fluids 2004, 28, 121.
(4) (a) Sheldon, R. A. Chem. Commun. 2001, 2399.
(b) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000,
39, 3772. (c) Dupont, J.; de Souza, R. F.; Suarez, P. A. Z.
Chem. Rev. 2002, 102, 3667. (d) Song, C. E. Chem.
Commun. 2004, 1033.
Table 2 Formation of Triazoles from Different Alkynes in Watera
Entry Alkyne
Product Control
CuI
Cu(OAc)2
Yield (%)b,c Yield (%)b,c Yield (%)b,c
20 (91:9) 100 (100:0) 77 (100:0)
(5) (a) Haimov, A.; Neumann, R. Chem. Commun. 2002, 876.
(b) Alper, H.; Januszkiewicz, K.; Smith, D. J. H.
Tetrahedron Lett. 1985, 26, 2263. (c) Chanrasekhar, S.;
Narsihmulu, C.; Sultana, S. S.; Reddy, N. R. Org. Lett. 2002,
4, 4399.
1
1a
2a
3a
2
2 (100:0) 100 (100:0) 71 (100:0)
10 (100:0) 100 (100:0) 100 (100:0)
(6) Dobbs, A. P.; Rimberley, M. R. J. Fluorine Chem. 2002,
118, 3.
(7) Li, C. J. Chem. Rev. 2005, 105, 3095.
Me
(8) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry;
Wiley: New York, 1984, 1–176.
3
(9) (a) Fan, W. Q.; Katritzky, A. R. In Comprehensive
Heterocyclic Chemistry II, Vol. 4; Katritzky, A. R.; Rees, C.
W.; Scriven, E. F. V., Eds.; Elsevier Science: Oxford, 1996,
1–126. (b) Holla, B. S.; Mahalinga, M.; Karthikeyan, M. S.;
Poojary, B.; Akberali, P. M.; Kumari, N. S. Eur. J. Med.
Chem. 2005, 40, 1173. (c) Elmorsi, M. A.; Hassanein, A. M.
Corros. Sci. 1999, 41, 2337. (d) Kim, D. K.; Kim, J.; Park,
H. J. Bioorg. Med. Chem. Lett. 2004, 14, 2401.
(10) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K.
B. Angew. Chem. Int. Ed. 2002, 41, 2596.
OMe
4
4a
5a
0
0
87 (100:0) 100 (100:0)
100 (100:0) 83 (100:0)
OH
5
OH
OH
6
6a
0
91 (100:0) 77 (100:0)
Ph
(11) Kolb, H. C.; Sharpless, K. B. Drug Discov. Today 2003, 8,
1128.
a Reagents: alkyne (1.2 mmol), benzyl azide (1 mmol), catalyst
(20 mol%), H2O (3 mL).16
b NMR yields based on benzyl azide starting material.
c The 1,4- vs. 1,5-regioselectivities are shown in parenthesis.
(12) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.;
Noodleman, L.; Sharpless, K. B.; Fokin, V. V. J. Am. Chem.
Soc. 2005, 127, 210.
Synlett 2006, No. 6, 957–959 © Thieme Stuttgart · New York