Full Paper
doi.org/10.1002/ejic.202000673
EurJIC
European Journal of Inorganic Chemistry
Synthesis of 4-(1-Benzyl-1H-1,2,3-triazol-4-yl)benzoic Acid:
1.0 mg of mesoporous CuO films (0.013 mmol, 4.4 mol-%) was
added to a 10 mL round-bottomed flask containing benzyl azide
(36.6 μL, 292 μmol), 4-ethynylbenzoic acid (64 μg, 443 μmol), and
THF (5 mL). The reaction mixture was refluxed at 50 °C and stirred
at 400 RPM for 24 h. An aliquot was taken and dried under a flow
of nitrogen before being analyzed by 1H NMR spectroscopy. 1H NMR
(300 MHz; [D6]DMSO) δ (ppm): 5.68 (2 H, s, CH2), 7.38–7.39 (5 H, m,
Ar), 8.00 (4 H, m, Ar), and 8.79 (1 H, s, CH).
Keywords: Chirality · Copper · Zinc · Heterogeneous
catalysis · Mesoporosity
[1] a) A. Baiker, Catal. Today 2005, 100, 159–170; b) F. Zaera, J. Phys. Chem.
C 2008, 112, 16196–16203.
[2] K. H. Ernst, Origins Life Evol. Biospheres 2010, 40, 41–50.
[3] R. Raval, J. Phys. Condens. Matter 2002, 14, 4119–4132.
[4] T. J. Lawton, V. Pushkarev, D. Wei, F. R. Lucci, D. S. Sholl, A. J. Gellman,
E. C. H. Sykes, J. Phys. Chem. C 2013, 117, 22290–22297.
[5] a) S. K. Sarkar, N. Burla, E. W. Bohannan, J. A. Switzer, J. Am. Chem. Soc.
2007, 129, 8972–8973; b) E. W. Bohannan, I. M. Nicic, H. M. Kothari, J. A.
Switzer, Electrochim. Acta 2007, 53, 155–160.
[6] a) T. Mallat, E. Orglmeister, A. Baiker, Chem. Rev. 2007, 107, 4863–4890;
b) A. Gabashvili, D. T. Major, N. Perkas, A. Gedanken, Ultrason. Sonochem.
2010, 17, 605–609.
Synthesis of Methyl 4-(1-Benzyl-1H-1,2,3-triazol-4-yl)benzoate:
1.0 mg of mesoporous CuO films (0.013 mmol, 4.4 mol-%) was
added to a 10 mL round-bottomed flask containing benzyl azide
(36.6 μL, 292 μmol), methyl 4-ethynylbenzoate (71 μg, 443 μmol),
and THF (5 mL). The reaction mixture was refluxed at 50 °C and
stirred at 400 RPM for 24 h. An aliquot was taken and dried under
1
a flow of nitrogen before being analyzed by H NMR spectroscopy.
1H NMR (300 MHz; [D6]DMSO) δ (ppm): 3.87 (3 H, t, CH3), 5.68 (2 H,
s, CH2), 7.38–7.39 (5 H, m, Ar), 8.02–8.03 (4 H, m, Ar), 8.79 (1 H, s,
CH).
[7] B. Pugin, H.-U. Blaser, Top. Catal. 2010, 53, 953–962.
[8] a) A. H. Lu, F. Schüth, Adv. Mater. 2006, 18, 1793–1805; b) R. A. Caruso, in
Colloid Chemistry I (Ed.: M. Antonietti), Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003, pp. 91–118; c) J. Lee, S. Yoon, T. Hyeon, S. M. Oh, K. B.
Kim, Chem. Commun. 1999, 2177–2178.
[9] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature
1992, 359, 710–712.
[10] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D.
Stucky, Science 1998, 279, 548–552.
[11] a) M. Ovcharov, N. Shcherban, S. Filonenko, A. Mishura, M. Skoryk, V.
Shvalagin, V. Granchak, Mater. Sci. Eng. B 2015, 202, 1–7; b) M. F. Chen,
H. Q. Xuan, X. Z. Zheng, J. Y. Liu, X. P. Dong, F. N. Xi, Electrochim. Acta
2017, 238, 269–277.
[12] a) K. E. Shopsowitz, A. Stahl, W. Y. Hamad, M. J. MacLachlan, Angew.
Chem. Int. Ed. 2012, 51, 6886–6890; Angew. Chem. 2012, 124, 6992–6996;
b) W. B. Yue, C. Randorn, P. S. Attidekou, Z. X. Su, J. T. S. Irvine, W. Z.
Zhou, Adv. Funct. Mater. 2009, 19, 2826–2833.
[13] M. Stucki, M. Loepfe, W. J. Stark, Adv. Eng. Mater. 2018, 20, 1700611.
[14] a) S. Kubo, R. Demir-Cakan, L. Zhao, R. J. White, M. M. Titirici, ChemSus-
Chem 2010, 3, 188–194; b) W.-C. Li, A.-H. Lu, C. Weidenthaler, F. Schüth,
Chem. Mater. 2004, 16, 5676–5681; c) Z. Yang, Y. Zhang, Z. Schnepp, J.
Mater. Chem. A 2015, 3, 14081–14092.
Catalytic Activity: Prior to use, CuO films were first passed through
a 35.5 μm sieve (ASTM E-11 specification) to ensure uniform particle
size. For cycling experiments, nanoparticles were recovered by de-
canting the reaction mixture, and carefully washing the catalyst in-
side the reaction vessel several times with chloroform followed by
water, before being dried in an oven (120 °C) for at least 12 hours
prior to subsequent use.
Characterization: Nitrogen sorption isotherms were collected at
77 K on a Micrometrics accelerated surface area and porosimetry
(ASAP) 2020 analyzer. Prior to analysis, film samples (100 mg) were
degassed at 120 °C for 8 h under the following conditions: evacua-
tion phase (10 °C/min, 120 °C, 4 h), heating phase (10 °C/min,
120 °C, 4 h). Nitrogen sorption isotherms were collected and evalu-
ated using Brunauer–Emmett–Teller (BET) and Barrett-Joyner-Hal-
enda (BJH) methods for surface area and pore size analysis, respec-
tively. Scanning electron microscope (SEM) images were obtained
from a Hitachi S4700 Field Emission-SEM. Samples were prepared
by breaking a film and placing it onto double-sided carbon adhe-
sive tape loaded onto an aluminum stub. The samples were then
sputter-coated with 4 nm of platinum/palladium (80:20). Samples
were measured at a working distance of 5 mm with an accelerating
voltage of 5 kV and a filament current of 10 μA. Energy-dispersive
X-ray (EDX) analyses were performed on a Hitachi S-2600N and fit-
ted using the Quartz Imaging Systems XOne software package be-
fore calculating the concentrations from the Kα lines. Samples were
ground into a fine powder and mounted on an aluminum sample
holder using an adhesive carbon tape. Powder X-ray diffraction
(PXRD) patterns were recorded on a Bruker D8 Advance diffractom-
eter equipped with a Cu Kα sealed tube X-ray source and a NaI
scintillation detector. Samples were ground to a fine powder prior
[15] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi, Nature
2004, 429, 281–284.
[16] Z. An, J. He, X. Shu, Y. Wu, Chem. Commun. 2009, 1055–1057.
[17] a) J. Xie, Y. Duan, S. Che, Adv. Funct. Mater. 2012, 22, 3784–3792; b) S.
Che, J. Nanosci. Nanotechnol. 2006, 6, 1557–1564; c) C. Wang, S. Liu, Y.
Duan, Z. Huang, S. Che, Sci. Technol. Adv. Mater. 2015, 16, 054206; d) Y.
Wang, J. Xu, Y. Wang, H. Chen, Chem. Soc. Rev. 2013, 42, 2930–2962.
[18] a) R. J. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood, Chem. Soc.
Rev. 2011, 40, 3941–3994; b) N. Grishkewich, N. Mohammed, J. Tang,
K. C. Tam, Curr. Opin. Colloid Interface Sci. 2017, 29, 32–45; c) P. Tingaut,
T. Zimmermann, G. Sèbe, J. Mater. Chem. 2012, 22, 20105–20111; d) E. J.
Foster, R. J. Moon, U. P. Agarwal, M. J. Bortner, J. Bras, S. Camarero-Espi-
nosa, K. J. Chan, M. J. D. Clift, E. D. Cranston, S. J. Eichhorn, D. M. Fox,
W. Y. Hamad, L. Heux, B. Jean, M. Korey, W. Nieh, K. J. Ong, M. S. Reid, S.
Renneckar, R. Roberts, J. A. Shatkin, J. Simonsen, K. Stinson-Bagby, N.
Wanasekara, J. Youngblood, Chem. Soc. Rev. 2018, 47, 2609–2679; e)
C. M. Walters, C. E. Boott, T.-D. Nguyen, W. Y. Hamad, M. J. MacLachlan,
Biomacromolecules 2020, 21, 1295–1302.
[19] a) R. H. Marchessault, F. F. Morehead, N. M. Walter, Nature 1959, 184,
632–633; b) J. F. Revol, H. Bradford, J. Giasson, R. H. Marchessault, D. G.
Gray, Int. J. Biol. Macromol. 1992, 14, 170–172.
[20] a) J.-F. Revol, L. Godbout, D. G. Gray, J. Pulp Pap. Sci. 1998, 24, 146–149;
b) R. M. Parker, G. Guidetti, C. A. Williams, T. Zhao, A. Narkevicius, S.
Vignolini, B. Frka-Petesic, Adv. Mater. 2018, 30, e1704477; c) A. Tran, W. Y.
Hamad, M. J. MacLachlan, Langmuir 2018, 34, 646–652; d) S. Beck, J.
Bouchard, R. Berry, Biomacromolecules 2011, 12, 167–172.
[21] K. E. Shopsowitz, J. A. Kelly, W. Y. Hamad, M. J. MacLachlan, Adv. Funct.
Mater. 2014, 24, 327–338.
1
to analysis. H NMR spectra of samples in CDCl3 were recorded on
a Bruker AV-300 spectrometer. CD spectroscopy of the films was
performed on a JASCO J-815 spectropolarimeter. Films were
mounted perpendicular to the incident light source, and spectra
were collected over 200–800 nm. An integration sphere was used
for opaque samples (CNMS-CuO, CNMS-Cu, and CuO).
Acknowledgments
We thank NSERC for funding (Discovery grant; CREATE NanoMat
grant).
[22] K. E. Shopsowitz, H. Qi, W. Y. Hamad, M. J. Maclachlan, Nature 2010, 468,
422–425.
Eur. J. Inorg. Chem. 2020, 3937–3943
3942
© 2020 Wiley-VCH GmbH