Journal of the American Chemical Society
Communication
(13) The situation is reminiscent of double diastereoselection, as
codified previously, but pertains to regio- and enantioselectivity in
these cases. See: Masamune, S.; Choy, W.; Petersen, J. S.; Sita, L. R.
Angew. Chem., Int. Ed. 1985, 24, 1.
more generally that intrinsically disfavored BV products may be
accessed with peptide catalysis. Furthermore, the mechanism
underlying the selectivity, which likely stems from interactions
between the peptide and H-bonding functionality of the
substrate, constitutes a distinct approach to selective BV
oxidation, relative to known small molecule catalysts. Further
interrogation of this mechanism as well as applications to both
enantioselective synthesis and natural product modification are
ongoing objectives in our laboratory.
ASSOCIATED CONTENT
* Supporting Information
■
S
Additional figures, experimental details and characterization.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by National Institutes of Health
(NIH R01-GM096403). We also thank Dr. Brandon Q.
Mercado for X-ray crystallographic analyses.
REFERENCES
■
(1) (a) Baeyer, A.; Villiger, V. Ber. Dtsch. Chem. Ges. 1899, 32, 3625.
(b) Krow, G. R. Org. React. 1993, 43, 251. (c) Ito, K. Comprehensive
Chirality; Carreira, E. M., Yamamoto, H.; Elsevier: Amsterdam,
201251 (d) Uyanik, M.; Ishihara, K. ACS Catal. 2013, 3, 513.
(2) Leisch, H.; Morley, K.; Lau, P. C. Chem. Rev. 2011, 111, 4165.
(3) (a) Bolm, C.; Schlingloff, G.; Weickhardt, K. Angew. Chem., Int.
Ed. 1994, 33, 1848. (b) Bolm, C.; Schlingloff, G. J. Chem. Soc., Chem.
Commun. 1995, 1247. (c) Paneghetti, C.; Gavagnin, R.; Pinna, F.;
Strukul, G. Organometallics 1999, 18, 5057. (d) Murahashi, S.; Ono, S.;
Imada, Y. Angew. Chem., Int. Ed. 2002, 41, 2366. (e) Watanabe, A.;
Uchida, T.; Irie, R.; Katsuki, T. Proc. Natl. Acad. Sci. U.S.A. 2004, 101,
5737. (f) Xu, S.; Wang, Z.; Zhang, X.; Zhang, X.; Ding, K. Angew.
Chem., Int. Ed. 2008, 47, 2840. (g) Xu, S.; Wang, Z.; Li, Y.; Zhang, X.;
Wang, H.; Ding, K. Chem.Eur. J. 2010, 16, 3021. (h) Zhou, L.; Liu,
X.; Ji, J.; Zhang, Y.; Hu, X.; Lin, L.; Feng, X. J. Am. Chem. Soc. 2012,
134, 17023.
(4) Peris, G.; Jakobsche, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007,
129, 8710.
(5) (a) Kolundzic, F.; Noshi, M. N.; Tjandra, M.; Movassaghi, M.;
Miller, S. J. J. Am. Chem. Soc. 2011, 133, 9104. (b) Lichtor, P. A.;
Miller, S. J. Nat. Chem. 2012, 4, 990.
(6) Mercado-Marin, E. V.; Garcia-Reynaga, P.; Romminger, S.;
Pimenta, E. F.; Romney, D. K.; Lodewyk, M. W.; Williams, D. E.;
Andersen, R. J.; Miller, S. J.; Tantillo, D. J.; Berlinck, R. G. S.; Sarpong,
R. Nature 2014, 509, 318.
(7) Peris, G.; Miller, S. J. Org. Lett. 2008, 10, 3049.
(8) Lichtor, P. A.; Miller, S. J. ACS Comb. Sci. 2011, 13, 321.
(9) Kagan, H. B.; Fiaud, J. C. In Topics in Stereochemistry; John Wiley
& Sons, Inc.: New York, 1988; p 249.
(10) Miller, S. J.; Copeland, G. T.; Papaioannou, N.; Horstmann, T.
E.; Ruel, E. M. J. Am. Chem. Soc. 1998, 120, 1629.
(11) (a) Vedejs, E.; Chen, X. J. Am. Chem. Soc. 1997, 119, 2584.
(b) Dehli, J. R.; Gotor, V. Chem. Soc. Rev. 2002, 31, 365.
(12) As conversion increases, the er of starting material and
“mismatched” lactone should increase, whereas the er of the “matched”
lactone should decrease. The ratio of matched to mismatched lactone
should also decrease (see SI for details).
D
dx.doi.org/10.1021/ja508757g | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX