This work is supported by the Office of Naval Research
(grant No. N00014-04-1-0434, Program Manager Dr Paul
Armistead), Air Force Office of Scientific Research (grant #
FA9550-07-1-0264, Program Manager Dr Charles Lee), and
Solarmer Energy Inc.
Notes and references
1 (a) D. Muhlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller,
¨
R. Gaudiana and C. Brabec, Adv. Mater., 2006, 18, 2884; (b) J. Y. Kim,
K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante and
A. J. Heeger, Science, 2007, 317, 222; (c) J. Peet, J. Y. Kim,
N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan,
Fig.
3 (a) J–V curves of the polymer solar cells based on
Nat. Mater., 2007, 6, 497; (d) A. J. Moule and K. Meerholz, Adv.
´
PSiDTBTEH and PSiDTBT12 under illumination of AM1.5,
100 mW cmꢁ2. (b) EQE curves of the PSCs with a structure of
ITO/PEDOT:PSS/Polymers: PCBM(1 : 1, wt/wt)/Ca/Al.
Mater., 2008, 20, 240; (e) M. M. Wienk, M. Turbiez, J. Gilot and
R. A. J. Janssen, Adv. Mater., 2008, 20, 2556; (f) J. H. Hou,
H.-Y. Chen, S. Q. Zhang, G. Li and Y. Yang, J. Am. Chem. Soc.,
2008, 130, 16144; (g) Y. Y. Liang, Y. Wu, D. Q. Feng, S.-T. Tsai,
H.-J. Son, Gang Li and Luping Yu, J. Am. Chem. Soc., 2009, 131, 56;
(h) L. J. Huo, T. L. Chen, Y. Zhou, J. H. Hou, H. Y. Chen, Y. Yang
and Y. F. Li, Macromolecules, 2009, 42, 4377; (i) L. J. Huo, J. H. Hou,
H. Y. Chen, S. Q. Zhang, Y. Jiang, T. L. Chen and Y. Yang,
Macromolecules, 2009, DOI: 10.1021/ma9012972.
2 (a) G. Li, V. Shrotriya, J. Huang, T. Mariarty, K. Emery and
Y. Yang, Nat. Mater., 2005, 4, 864; (b) M. Reyes-Reyes, K. Kim
and D. L. Carroll, Appl. Phys. Lett., 2005, 87, 083506; (c) W. Ma,
C. Yang, X. Gong, K. Lee and A. J. Heeger, Adv. Funct. Mater.,
2005, 15, 1617; (d) Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis,
J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles,
I. McCulloch, C.-S. Ha and M. Ree, Nat. Mater., 2006, 5, 197;
(e) M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis and
D. S. Ginley, Appl. Phys. Lett., 2006, 89, 143517.
structure of PSiDTBTEH and PSiDTBT12 are very similar
except for the different alkyl side chains, these results suggest
that obvious improvements in device performance can be
achieved by modifying the alkyl side chains in this system.
The AFM images are provided in the ESI document,w
and it can be seen that the PSiDTBTEH/PCBM blend
exhibited very similar morphology with the PSiDTBT12/
PCBM blend.
The external quantum efficiency (EQE) is employed to
reveal the photoresponse. The devices were first encapsulated
in a nitrogen filled glove box, and the EQE of the devices were
then measured in air. As shown in Fig. 3b, both of the devices
based on PSiDTBTEH and PSiDTBT12 exhibited a very
broad response range from 350 nm to 800 nm, which coincides
with the corresponding absorption spectra. Within the whole
range, the maximum EQE value reached 35% at 580 nm for
PSiDTBT12 and 32% at 580 nm for PSiDTBTEH. The EQE
of the PSiDTBT12 is higher than that of PSiDTBTEH in the
range of 400 nm–700 nm, which agrees well with the higher JSC
and better photovoltaic performance of PSiDTBT12. This can
be explained by the less steric hindrance in dodecyl than in
ethylhexyl, giving rise to a better p–p* stacking configurations
at no cost to the polymer solubility. Thus it was further proved
that the dodecyl side chains performed better than the
ethylhexyl chains in this system.
3 (a) M. Svensson, F. Zhang, S. C. Veenstra, W. J. H. Verhees,
¨
J. C. Hummelen, J. M. Kroon, O. Inganas and M. R. Andersson,
Adv. Mater., 2003, 15, 988; (b) Q. Zhou, Q. Hou, L. Zheng, X. Deng,
G. Yu and Y. Cao, Appl. Phys. Lett., 2004, 84, 1653; (c) L. H. Slooff,
S. C. Veenstra, J. M. Kroon, D. J. D. Moet, J. Sweelssen and
M. M. Koetse, Appl. Phys. Lett., 2007, 90, 143506.
4 A. J. Moule, A. Tsami, T. W. Bunnagel, M. Forster, N. M.
¨
Kronenberg, M. Scharber, M. Koppe, M. Morana, C. J. Brabec,
K. Meerholz and U. Scherf, Chem. Mater., 2008, 20, 4045.
5 G. Dennler, M. C. Scharber and C. J. Brabec, Adv. Mater., 2009,
21, 1323.
6 (a) S. Yamaguchi and K. Tamao, Bull. Chem. Soc. Jpn., 1996, 69,
2327; (b) X. W. Zhan, C. Risko, F. Amy, C. Chan, W. Zhao,
S. Barlow, A. Kahn, J. L. Bredas and S. R. Marder, J. Am. Chem.
Soc., 2005, 127, 9021; (c) S. Yamaguchi and K. Tamao, Chem. Lett.,
2005, 34, 2; (d) G. Lu, H. Usta, C. Risko, L. Wang, A. Facchetti,
M. A. Ratner and T. J. Marks, J. Am. Chem. Soc., 2008, 130, 7670.
7 (a) E. Wang, L. Wang, L. Lan, C. Luo, W. Zhuang, J. Peng and
Y. Cao, Appl. Phys. Lett., 2008, 92, 033307; (b) B. X. Mi,
Y. Q. Dong, Z. Li, J. W. Y. Lam, M. Haubler, H. H. Y. Sung,
H. S. Kwok, Y. P. Dong, I. D. Williams, Y. Q. Liu, Y. Luo,
Z. G. Shuai, D. B. Zhu and B. Z. Tang, Chem. Commun., 2005,
3583; (c) P. T. Boudreault, A. Michaud and M. Leclerc, Macromol.
Rapid Commun., 2007, 28, 2176.
8 L. Liao, L. Dai, A. Smith, M. Durstock, J. Lu, J. Ding and Y. Tao,
Macromolecules, 2007, 40, 9406.
9 Y. F. Li, Y. Cao, J. Gao, D. L. Wang, G. Yu and A. J. Heeger,
Synth. Met., 1999, 99, 243.
10 Z. K. Chen, W. Huang, L. H. Wang, E. T. Kang, B. J. Chen,
C. S. Lee and S. T. Lee, Macromolecules, 2000, 33, 9015.
11 J. H. Hou, C. H. Yang, J. Qiao and Y. F. Li, Synth. Met., 2005,
150, 297.
In conclusion, a series of low bandgap silole-containing
polymers were synthesized with different alkyl side chains.
The PSiDTBT12-based device exhibited a higher power
conversion efficiency (PCE) of 3.43% than that of the
PSiDTBTEH-based device and the overall performance of
silole-containing polymers was superior to its counterpart of
PCPDTTBTT without the silole unit.4 Considering the
sensitivity of alkyl chain length on device performance in this
series, the development of dithienosilole with different side
chain lengths could become a promising method for realizing
high efficiency polymer photovoltaic materials.
ꢀc
This journal is The Royal Society of Chemistry 2009
5572 | Chem. Commun., 2009, 5570–5572