A. Satheshkumar, K.P. Elango / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 98 (2012) 378–383
383
4.0
3.5
3.0
2.5
2.0
1.5
1.0
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
B
C
References
[1] M.D. Sarma, R. Ghosh, A. Patra, B. Hazra, Eur. J. Med. Chem. 43 (2008)
1878–1888.
[2] P.H. Bernardo, C.L. Chai, M. LeGuen, G.D. Smith, P. Warning, Bioorg. Med. Chem.
Lett. 17 (2007) 82–85.
[3] S. Spyroudis, Molecules 5 (2000) 1291–1330.
[4] T.C. Barbosa, C.A. Camara, T.M. Silva, R.M. Martins, A.C. Pinto, M.D. Vargas,
Bioorg. Med. Chem. 13 (2005) 6464–6469.
[5] Aurora Molinari, Alfonso Oliva, Claudia Ojeda, José Ma Miguel del Corra, Ma
Angeles Castro, Carmen Cuevas, Arturo San Feliciano, Bioorg. Med. Chem 13
(2005) 6645–6650.
[6] O. Bakare, C.L. Ashendel, H. Peng, L.H. Zalkow, E.M. Burgess, Bioorg. Med. Chem
11 (2003) 3165–3170.
[7] C.G.T. Oliveria, F.F. Miranda, V.F. Ferreira, C.C. Freitas, R. Rabello, J.M.
Carballido, L.C.D. Correa, J. Braz. Chem. Soc 12 (2001) 339–345.
[8] N.P. Mischenko, S.A. Fedoreyev, N.D. Pokhilo, V.Ph. Anuferiev, V.A. Denisenko,
V.P. Glazunov, J. Nat. Prod 68 (2005) 1390–1393.
[9] P. Cai, F. Kong, M.E. Ruppen, G. Glasier, G.T. Carter, J. Nat. Prod 68 (2005)
1736–1742.
0.00001 0.00002 0.00003 0.00004 0.00005 0.00006 0.00007 0.00008
[D]
Fig. 7. Stern–Volmer plots for the fluorescence quenching of HMB (B) and aniline
(C) with DCNQ at 298 K.
[10] V.K. Tandon, H.K. Maurya, N.P. Misshra, P.K. Shukla, Eur. J. Med. Chem. 44
(2009) 3130–3137.
[11] J. Benites, J.A. Valderrama, K. Bettega, R.C. Pedrosa, P.B. Calderon, J. Verrax, Eur.
J. Med. Chem. 45 (2010) 6052–6057.
[12] M. Leibovitch, G. Olovsson, G. Sundrababu, V. Ramamurthy, J.R. Scheffer, J.
Trotter, J. Am. Chem. Soc. 118 (1996) 1219–1220.
[13] G.R. Desiraju, K.V.R. Kishan, J. Am. Chem. Soc. 111 (1989) 4838–4843.
[14] K. Tanaka, F. Toda, Chem. Rev. 100 (2000) 1025–1074.
[15] Leonard R. Mac Gillivray, J. Org. Chem 73 (2008) 3311–3317.
[16] A. Ram Reddy, N.V. Krishnamurthy, B. Bhudevi, Spectrochim. Acta Part A 63
(2006) 700–708.
[17] A.T. Ricardo, C. Lorena, C. Mauricio, V. Joan, J. Braz. Chem. Soc. 20 (2009)
999–1002.
[18] V.K. Tandon, D.B. yadav, R.V. Singh, M. Vaish, A.K. Chturvedi, P.K. Shukla,
Bioorg. Med. Chem. Lett 15 (2005) 3463–3466.
2a–g at the SCF level with the Gaussian program. The geometries
were fully optimized in the RHF framework with 6-31G basis sets.
The energy of the LUMO of DCNQ and that of the HOMO of the ani-
lines along with
formation of EDA adducts are depicted in Fig. S3. The results, given
in the figure, indicated that the E for anilines with electron donat-
D
E (=HOMO of donor ꢂ LUMO of acceptor) for the
D
ing substituents is relatively less than that for anilines with
electron withdrawing substituents when compared to the unsub-
stituted aniline. This suggested that the formation of EDA adduct
by anilines with electron donating substituents is relatively easy
and consequently the substitution reaction (in solid phase) occur
at room temperature. While reaction of anilines possessing elec-
tron withdrawing substituents require slight warming as expected.
[19] V.K. Tandon, D.B. yadav, R.V. Singh, A.K. Chturvedi, P.K. Shukla, Bioorg. Med.
Chem. Lett 15 (2005) 5324–5328.
[20] S. Yerushalmi, C. Lem, S. Bittner, Synthesis 2 (2007) 239–242.
[21] J.C. Lien, L.J. Huang, J.P. Wang, C.M. Teng, K.H. Lee, S.C. Kuo, Bioorg. Med. Chem
5 (1997) 2111–2120.
Also, the value of
DE for DCNQ–HMB adduct is comparable with
that for DCNQ–anilines with electron withdrawing substituents.
Hence, addition of HMB prior to the nucleophile slows down the
[22] E.W.A.O. Sarhana, A.M.
Chemie 129 (1998) 205.
K El-Dean, M.I. Abdel-Mmnem, Monatshefte fur
rate of the reaction rather than preventing it. If the
DE for the
[23] V.K. Tandon, H.K. Maurya, Tetrahedron Lett. 50 (2009) 5896–5902.
[24] G.M. Neelgund, A.S. Kulkarni, M.L. Budni, Monatshefte fur Chemie 135 (2009)
343–355.
[25] A. Graja, R. Swietilk, M. Polomska, A. Brau, J.P. Farges, Synthetic Metals 125
(2002) 319–324.
DCNQ–HMB EDA adduct would have been very low than that
observed, it may even prevent the substitution at DCNQ.
Conclusion
[26] F. El-Zahraa, M.E. Hegazy, A.F. Soheirz, E.A. Hamed, S.M. Sharaf, J. Phys. Org.
Chem. B (2000) 549–554.
[27] M. Aguilar-Matrtinez, G. Cuevas, M. Jimenez-Estrada, I. Gonzalez, B. Lotina-
Hennsen, N. Macias-Ruvalcaba, J. Org. Chem. 64 (1999) 3684–3694.
[28] N. Macias- Ruvalcaba, G. Cuevas, I. Gonzalez, M. Aguliar-Martinez, J. Org.
Chem. 67 (2002) 3673–3681.
[29] L. Elisa Leyva, I. Lopez, E. Loredo-carrillo, Margarita Rodriguez-Kessler, Antonio
Monte-Rojas, J. Flu. Chem. 132 (2011) 94–101.
[30] G.M. Neelgund, M.L. Budni, Spectrochim. Acta A 61 (2005) 1729–1735.
[31] H.M.A. Salman, M.M. Abu-Krisha, H.S. El-Sheshtawy, Can. J. Anal. Sci. Spectrosc.
49 (2004) 282–289.
[32] M. Pandeeswaran, E.H. El-Mossalamy, K.P. Elango, Int. J. Chem. Kinetics (2009)
787–799.
To conclude, the driving force, for the nucleophilic substitution
reaction to occur at DCNQ, is the ease with which the initial EDA
adduct forms between the reactants. This can easily be achieved
in solid state itself against the conventional methods i.e. in the
absence of any solvent and base. Such an environment friendly
attempt would certainly be useful in the preparation of many bio-
logically significant amino naphthaquinone derivatives.
[33] Yanlan Hui, Elaine Lay Khim Chng, Cheryl Yi Lin Chng, Hwee Ling Poh, Richard
D. Webster, J. Am. Chem. Soc. 131 (2009) 1523–1534.
[34] Qin. Zhou, Timothy M. Swager, J. Am. Chem. Soc. 117 (1995)
12593–12602.
Acknowledgement
The authors thank the University Grants Commission, New
Delhi for its financial assistance to carry out this research work.
[35] Basavaraj G. Evale, S.M. Hanagodhimath, J. Lumin. 130 (2010) 1330–1337.