Synthesis of Unsymmetrical Diaryl Chalcogenide Compounds
SCHEME 2
the copper catalyst was reduced by magnesium at each
step, and these processes were the important steps for
the preparation of the aryl-chalcogen bond via cleavage
of the dichalcogenide bond. Thus, in the copper-catalyzed
phenylchalcogenation, the addition of magnesium en-
abled the efficient use of two PhY (Y ) S or Se) groups
generated from diphenyl dichalcogenide under neutral
conditions.
TABLE 5. Rea ction betw een Ar I 1 a n d P h YCu (I)
a
(
Y ) Se or S)
Exp er im en ta l Section
Gen er a l P r oced u r e. All reactions were carried out under
a nitrogen atmosphere. NMR spectra were recorded on a J EOL
EX-270 spectrometer (270 MHz for 1H, 67.5 MHz for C).
Chemical shifts are reported in δ ppm referenced to an internal
13
entry
R
PhYCu
ArYPhb (%)
1
tetramethylsilane standard for H NMR and chloroform-d (δ
1c
2
3
H
H
Me
Me
Se
Se
Se
S
trace
81
82
7
7.0) for 13C NMR. IR spectra were measured by Perkin-Elmer
Spectrum One FT-IR spectrometer.
Cop p er -Ca ta lyzed Syn th esis of Dia r yl Selen id e fr om
4
80
1
Ar yl Iod id e a n d Diselen id e (Ta ble 2). En tr y 4: H NMR
a
The mixture of 1 (0.3 mmol), bpy (0.3 mmol), and PhYCu (0.3
mmol) in DMF (1.0 mL) was stirred at 110 °C. Isolated yields
after silica gel chromatography. bpy was not added.
(
5
CDCl
3
) δ 2.01 (s, 3H), 7.07 (t, J ) 7.2 Hz, 1H), 7.18-7.25 (m,
b
H), 7.41 (t, J ) 7.2 Hz, 1H), 7.69 (d, J ) 7.2 Hz, 1H), 8.12
c
13
(
1
1
br, 1H), 8.38 (d, J ) 7.2 Hz, 1H); C NMR (CDCl
3
) δ 24.5,
20.9, 124.6, 127.1, 129.3, 129.5, 129.9, 130.0, 130.7, 131.1,
-1
37.4, 168.2; IR (neat) 3289, 3059, 1668, 1581, 1515, 1428 cm
13NOSe: C, 57.94; H, 4.51; N, 4.83.
Found: C, 57.85; H, 4.53; N, 4.80.
.
Anal. Calcd for C14
H
1
En tr y 5: H NMR (CDCl
3
) δ 3.39 (s, 3H), 4.56 (s, 2H), 7.14
(
1
1
t, J ) 8.4 Hz, 1H), 7.24-7.29 (m, 4H), 7.34 (d, J ) 8.4 Hz,
H), 7.41-7.45 (m, 3H); 13C NMR (CDCl
) δ 58.1, 74.4, 127.3,
27.4, 128.4, 128.6, 129.3, 130.9, 131.7, 133.1, 133.8, 139.3;
3
-
1
IR (neat) 3057, 1577, 1476 cm . Anal. Calcd for C14H14OSe:
C, 60.66; H, 5.09. Found: C, 60.77; H, 5.12.
1
En tr y 7: H NMR (CDCl
3
) δ 7.22-7.38 (m, 6H), 7.57-7.66
) δ 126.3, 126.6, 126.7, 127.7, 128.6,
29.1, 129.6, 131.5, 132.0, 133.3, 135.5; IR (neat) 1570, 1476,
(
1
1
m, 3H); 13C NMR (CDCl
3
-
1
313 cm . Anal. Calcd for C13
9 3
H F Se: C, 51.84; H, 3.01.
Found: C, 51.54; H, 3.16.
1
En tr y 11: H NMR (CDCl
3
) δ 7.24-7.37 (m, 3H), 7.40-7.47
) δ 125.8, 125.8,
25.9, 126.0, 128.5, 128.7, 129.7, 131.0, 134.8; IR (neat) 1601,
(
1
1
m, 4H), 7.55-7.58 (m, 2H); 13C NMR (CDCl
3
-
1
325 cm . Anal. Calcd for C13
H
9
F
3
Se: C, 51.84; H, 3.01.
F IGURE 3. Plausible reaction mechanism.
Found: C, 51.69; H, 3.14.
En tr y 15: H NMR (CDCl
1
3
) δ 7.16-7.20 (m, 1H), 7.26-7.32
that complex 8 is impossible to perform this reaction, it
is reduced by magnesium to readily produce Cu(I)SePh
(m, 3H), 7.47-7.51 (m, 2H), 7.72 (d, J ) 7.9 Hz, 1H), 8.47-
8.49 (m, 1H), 8.66 (br, 1H); 13C NMR (CDCl
) δ 124.2, 127.9,
28.8, 129.5, 129.6, 133.4, 140.0, 148.2, 152.7; IR (neat) 1576,
3
1
1
5
1
1
0 which is the activating species. Finally, the complex
0 is converted into ArSePh by the reaction of ArI, and
-
1
476, 1463, 1438, 1403 cm . Anal. Calcd for C11
6.42; H, 3.87; N, 5.98. Found: C, 56.43; H, 3.97; N, 6.00.
9
H NSe: C,
in this step, the generated CuI provides 10 again through
two ways.
Cop p er -Ca ta lyzed Syn th esis of Dia r yl Su lfid e fr om
Ar yl Iod id e a n d Disu lfid e (Ta ble 3). En tr y 3: H NMR
1
On the other hand, MgY(SePh) 9 is formed by the
reductive reaction of a copper-phenylselenide complex
13
(
CDCl
NMR (CDCl
131.0, 131.3, 135.1, 136.8, 138.7; IR (neat) 1491, 1467 cm .
3
) δ 2.32 (s, 3H), 2.37 (s, 3H), 7.08-7.23 (m, 8H);
C
3
) δ 20.4, 21.0, 126.5, 127.0, 128.5, 129.9, 130.0,
-
1
(8 or 12) by magnesium, and it is reused as the phenylse-
lenium source in the presence of Cu(I)I in the catalytic
Anal. Calcd for C14
H
14S: C, 78.45; H, 6.58. Found: C, 78.40;
system.4a Similarly, it is anticipated that the same
H, 6.61.
En tr y 6: H NMR (CDCl
1
3
) δ 2.05 (s, 3H), 2.29 (s, 3H), 7.00-
mechanism is applicable to the copper-catalyzed synthe-
sis of diaryl sulfide with disulfide compounds. Thus, the
present method is feasible to synthesize ArYPh (Y ) S
or Se) from ArI in good yields by only using 0.5 equiv of
7
1
.11 (m, 5H), 7.43 (t, J ) 8.2 Hz, 1H), 7.57 (d, J ) 7.5 Hz,
H), 8.18 (br, 1H), 8.43 (d, J ) 8.2 Hz, 1H); 13C NMR (CDCl
)
3
δ 20.9, 24.7, 120.8, 120.9, 124.3, 127.8, 127.9, 130.0, 130.5,
-1
1
35.9, 136.5, 139.5, 168.2; IR (neat) 3360, 1693, 1511 cm
Anal. Calcd for C15 15NOS: C, 70.01; H, 5.87; N, 5.44.
Found: C, 69.94; H, 5.98; N, 5.47.
En tr y 7: 1H NMR (CDCl
) δ 7.19 (d, J ) 7.9 Hz, 1H), 7.20-
.43 (m, 7H), 7.68 (d, J ) 7.6 Hz, 1H); C NMR (CDCl
26.2, 126.5, 126.6, 126.7, 128.1, 129.5, 132.0, 132.3, 133.0,
.
(PhY)
2
.
H
In conclusion, we have developed a magnesium-
induced copper-catalyzed synthesis of the unsymmetrical
diaryl selenide or diaryl sulfide from aryl iodide and
diphenyl diselenide or diphenyl disulfide. In this method,
3
1
3
7
1
1
3
) δ
-
1
33.8, 136.7; IR (neat) 1594, 1473, 1440, 1312 cm . Anal.
Calcd for C13
.90.
H
9
F
3
S: C, 61.41; H, 3.57. Found: C, 61.71; H,
(
18) Back, T. G.; Collins, S.; Krishna, M. V.; Law, K.-W. J . Org.
Chem. 1987, 52, 4258-4264.
19) Organic Syntheses; J ohn Wiley & Sons: New York, 1973;
Collect. Vol. 5, pp 107-110.
3
1
(
En tr y 9: mp 46-47 °C; H NMR (CDCl
3.79 (s, 3H), 6.85 (d, J ) 6.5 Hz, 2H), 7.06 (d, J ) 8.2 Hz, 2H),
3
) δ 2.29 (s, 3H),
J . Org. Chem, Vol. 69, No. 3, 2004 919