C O M M U N I C A T I O N S
Table 2. Additions of Grignards to 4
Table 3. Variation of the Enone
entry
ImH+
R
T (
°
C)
product
conv.a (%)
eeb (%)
entry ImH+ enone
n
R1
R2
R3
prod.
conv.a (%) eeb (%)
1
2
3
4
5
6
7
8
9
2a
3d
3d
3d
3d
3d
3d
3d
3d
3d
ethyl
ethyl
butyl
butenyl
i-butyl
i-propyl
c-pentyl
c-hexyl
t-butyl
Ph
0
0
0
ent-5a
5a
5b
5c
5d
5e
5f
5g
5h
5i
96(90)
99(81)
100
91(80)
100(72)
100(77)
100(80)
100(79)
0
73(S)
80(R)
77(R)
90(S)
96(S)
77(R)
85(R)
74(R)
1
2
3
4
5
6
7
8
2a
3d
3d
3d
3d
3d
3d
3d
6
6
7a
7b
7c
7d
8
1
1
1
1
1
1
0
2
Me,Me methyl Et
Me,Me methyl Et
ent-10 93(57)
10 100(85) 82(R)
71(S)
-30
-30
-18
-30
-30
-30
-30
H,H
H,H
H,H
H,H
H,H
H,H
ethyl
Me 11a
98(67)
98(69)
98(87)
99(84)
98(90)
99
68(S)
81(S)
72(S)
69(R)
46(R)
82(R)
i-butyl Et
phenyl Et
butenyl Et
methyl Et
methyl Et
11b
11c
11d
12
9
13
10
72(61)
66(R)
a Conversion determined by GC-MS. Isolated yields in parentheses.
a Conversion determined by GC-MS. Isolated yields are in parentheses.
b Determined by chiral GC (Lipodex E).
b Determined by chiral GC (Lipodex E).
Information). Concerning Hermann’s-type ImH+ 1a-c, better
results were obtained with the smaller 1-phenyl ethyl substituents
(ee up to 55%, entries 1 and 3), rather than 2-ethylnaphthyl (17%
ee, entry 2). The case of the imidazolidiniums 2a-d is more tricky;
the enantioselectivity decreased following the order 1-naphthyl
(68%) > o-MeC6H4 (63%) . 2-naphthyl (17%) > o-i-PrC6H4
(10%; entries 4-7). With bidentates ImH+ 3a-f (entries 8-13),
the enantioselectivity logically increased with the size of the
substituent on the chiral center. Slightly better conversions were
obtained by adding the substrate on the Grignard reagent slowly.
Finally, when adding first the substrate and then the Grignard, the
ee drops down, and only 2% ee was obtained (entry 14) with ImH+
2a. This may indicate that the active asymmetric species, in the
present reaction, is an ate-complex (or higher-order cuprate) such
as the type [(NHC)CuEt2]. This is in contrast with the copper-
catalyzed asymmetric allylic substitution, where the Grignard
reagent is added very slowly to the substrate to avoid the formation
of cuprate species.14 A last practical modification was made: instead
of deprotonating ImH+ with BuLi, we just did it with the Grignard
reagent used for the conjugate addition (entry 18). Although the
observed ee is slightly lower, this procedure is more convenient
and more reproducible.
Next, we explored the scope and limitation of this new
methodology. First, a screening of the various Grignard reagents
was made with 3-methylcyclohex-2-enone 4 (Table 2). Primary
Grignards gave high ee’s, up to 96% with i-Bu (entry 5). Secondary
Grignards behaved as well, particularly when the reaction temper-
ature was lowered to -30 °C. However, t-BuMgBr did not react
at all, even at a higher temperature. Finally, PhMgBr gave 66% ee
of an adduct that cannot be obtained by the Rh-catalyzed conjugate
addition of aryl boronic acids.2c
Complementary, the addition of EtMgBr was done on various
trisubstituted cyclohexenones (Table 3). In all cases, the reaction
afforded the desired product in good to moderate ee’s. It should be
pointed out that even poorly reactive enones, such as isophorone
or phenyl cyclohexenone, gave good yields and ee’s.
Turning to five- (10) and seven-membered rings (11), we only
tested the addition of EtMgBr, with 3d as chiral ligand. Although
the ee is moderate, this promising result should be improved with
better ligands. In conclusion, we have found an efficient way to
create, enantioselectively, all-carbon quaternary centers, by the
unprecedented asymmetric conjugate addition of Grignard reagents
associated with a copper catalyst and a chiral diaminocarbene ligand.
There is no need to use specially activated trisubstituted enones,
and the scope of the reaction seems wider because many Grignard
reagents are easily or commercially available. We strongly believe
that new chiral diaminocarbenes, from these laboratories or
elsewhere, will improve these first generation ligands.
Acknowledgment. The authors thank Stephane Rosset for the
help, the Swiss National Research Foundation (Grant No. 200020-
105368) and COST action D24/0003/01 (OFES Contract No.
C02.0027) for financial support.
Note Added in Proof. After submission of our manuscript, a
Communication related to our work appeared: Lee, K. S.; Brown,
M. K.; Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2006, 128,
7182.
Supporting Information Available: Tables 2 and 3, full experi-
mental data, all chromatograms, and NMR spectra of all new conjugate
adducts. This material is available free of charge via the Internet at
References
(1) Trost, B. M.; Jiang, C. Synthesis 2006, 369-396.
(2) For reviews on asymmetric conjugate additions, see: (a) Alexakis A.;
Benhaim, C. Eur. J. Org. Chem. 2002, 3221-3236. (b) Krause, N.;
Hoffmann-Ro¨der, A. Synthesis 2001, 171. (c) Hayashi, T. Acc. Chem.
Res. 2000, 33, 354-362.
(3) D′Augustin, M.; Palais, L.; Alexakis, A. Angew. Chem., Int. Ed. 2005,
44, 1376-1378.
(4) Wu, J.; Mampreian, D. M.; Hoveyda, A. H. J. Am. Chem. Soc. 2005,
127, 4584-4585.
(5) Hird, A. W.; Hoveyda, A. H. J. Am. Chem. Soc. 2005, 127, 14988-14989.
(6) Fillion, E.; Wilsily, A. J. Am. Chem. Soc. 2006, 128, 2774-2775.
(7) (a) Krause, N. In Modern Organocopper Chemistry; Ed.; Wiley-VCH:
Weinheim, Germany, 2002. (b) Ibuka, T. Organocopper Reagents in
Organic Synthesis; Camelia & Rose Press: Osaka, Japan, 2000. (c) Taylor,
R. J. K. Organocopper Reagents: a practical approach I; Oxford
University Press: Oxford, 1994. Reviews: (d) Krause, N. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 187-204. (e) Yamamoto, Y. Houben-Weyl
StereoselectiVe Synthesis; Thieme: Stuttgart, Germany, 1995; Vol. 4, pp
2041-2057.
(8) (a) Feringa, B. L.; Badorrey, R.; Pena, D.; Harutyunyan, S. R.; Minaard,
A. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5834-5838. (b) Lopez, F.;
Harutyunyan, S. R.; Meetsma, A.; Minaard, A. J.; Feringa, B. L. Angew.
Chem., Int. Ed. 2005, 44, 2752-2756.
(9) For reviews on NHCs, see: (a) Herrmann, W. A. Angew. Chem., Int. Ed.
2002, 41, 1290-1309. (b) Kirmse, W. Angew. Chem., Int. Ed. 2004, 43,
1767-169. (c) Perry, M. C.; Burgess, K. Tetrahedron: Asymmetry 2003,
14, 951-961. (d) Cesar, V.; Bellemin-Laponnaz, S.; Gade, L. H. Chem.
Soc. ReV. 2004, 33, 619-636.
(10) Fraser, P. K.; Woodward, S. Tetrahedron Lett. 2001, 42, 2747-2750.
(11) (a) Pytkowicz, J.; Roland, S.; Mangeney, P. Tetrahedron: Asymmetry
2001, 12, 2087-2089. (b) Guillen, F.; Winn, C. L.; Alexakis, A. Tetra-
hedron: Asymmetry 2001, 12, 2083-2086. (c) Alexakis, A.; Winn, C.
L.; Guillen, F.; Pytkowicz, J.; Roland, S.; Mangeney, P. AdV. Synth. Catal.
2003, 345, 345-348. (d) Alexakis, A.; Winn, C. L.; Guillen, F.; Pytkowicz,
J.; Roland, S.; Mangeney, P. J. Organomet. Chem. 2005, 690, 5672-
5695. (e) Arnold, P. L.; Rodden, M.; Davis, K. M.; Scarisbrick, A. C.;
Blake, A. J.; Wilson, C. Chem. Commun. 2004, 1612-1613. (f) Clavier,
H.; Coutable, L.; Guillemin, J. C.; Mauduit, M. Tetrahedron: Asymmetry
2005, 16, 921-924. (g) Clavier, H.; Coutable, L.; Toupet, L.; Guillemin,
J. C.; Mauduit, M. J. Organomet. Chem. 2005, 690, 5237-5254.
(12) Okamoto, S.; Tominaga, S.; Saino, N.; Kase, K.; Shimoda, K. J.
Organomet. Chem. 2005, 690, 6001-6007.
(13) Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225-
3227.
(14) (a) Tissot-Croset, K.; Polet, D.; Gille, S.; Hawner, C.; Alexakis, A. Syn-
thesis 2004, 2586-2590. (b) Tissot-Croset, K.; Polet, D.; Alexakis, A.
Angew. Chem., Int. Ed. 2004, 43, 2426-2428 and references cited therein.
JA0629920
9
J. AM. CHEM. SOC. VOL. 128, NO. 26, 2006 8417