10.1002/anie.201910871
Angewandte Chemie International Edition
COMMUNICATION
[15] a) E. J. Emmett, B. R. Hayter, M. C. Willis, Angew. Chem. Int. Ed. 2014,
53, 10204-10208; b) B. Nguyen, E. J. Emmett, M. C. Willis, J. Am.
Chem. Soc. 2010, 132, 16372-16373.
[16] a) Y. Chen, P. R. D. Murray, A. T. Davies, M. C. Willis, J. Am. Chem.
Soc. 2018, 140, 8781-8787; b) Y. Chen, M. C. Willis, Chem. Sci. 2017,
8, 3249-3253; c) A. S. Deeming, C. J. Russell, M. C. Willis, Angew.
Chem. Int. Ed. 2016, 55, 747-750; d) V. Vedovato, E. P. A. Talbot, M.
C. Willis, Org. Lett. 2018, 20, 5493-5496.
[17] a) A. S. Deeming, C. J. Russell, A. J. Hennessy, M. C. Willis, Org. Lett.
2014, 16, 150-153; b) A. S. Deeming, C. J. Russell, M. C. Willis,
Angew. Chem. Int. Ed. 2015, 54, 1168-1171; c) E. J. Emmett, B. R.
Hayter, M. C. Willis, Angew. Chem. Int. Ed. 2013, 52, 12679-12683; d)
D. C. Lenstra, V. Vedovato, E. Ferrer Flegeau, J. Maydom, M. C. Willis,
Org. Lett. 2016, 18, 2086-2089.
[18] For an example of an arylsulfonyl fluouride X-ray structure, see: D.
Jantke, A. N. Marziale, T. Reiner, F. Kraus, E. Herdtweck, A. Raba, J.
Eppinger, J. Organomet. Chem. 2013, 744, 82-91.
In conclusion, we have reported an efficient and general
synthesis of multifunctional alkenylsulfonyl fluorides. These Pd-
catalyzed reactions proceed from alkenyl triflates readily formed
from commonly available ketones, and display good functional
group tolerance. We have shown that templates in this new class
of sulfonyl fluoride are able to undergo a variety of orthogonal
derivatization processes, including nucleophilic substitution at
sulfur, conjugate addition to the alkene, Pd-catalyzed
hydrogenation of the olefin, N-functionalization, and a CuAAC
click reaction. We anticipate that these attributes will result in
these compact, low molecular weight and densely functionalized
reagents being exploited in a variety of chemical biology, synthetic
and medicinal chemistry applications.
[19] Deposition Number 1944829 contains the supplementary
crystallographic data for this paper. These data are provided free of
charge by the joint Cambridge Crystallographic Data Centre and
Fachinformationszentrum Karlsruhe Access Structures service
Acknowledgements
We are grateful to the Croucher Foundation (to T.S.-B.L.), and
the EPSRC for their support of this study. S.W.B. thanks Ed Conn,
John Curto and Alyn Davies (all Pfizer) for helpful discussions and
Ivan Samadjiev (Pfizer) for assistance with X-ray crystallographic
studies.
[20] R. G. Bhat, Y. Ghosh, S. Chandrasekaran, Tetrahedron Lett. 2004, 45,
7983-7985.
Keywords: sulfur • fluoride • catalysis • synthetic methods •
multifunctional
References
[1]
[2]
a) C. G. Swain, C. B. Scott, J. Am. Chem. Soc. 1953, 75, 246-248; b)
M. E. Aberlin, C. A. Bunton, J. Org. Chem. 1970, 35, 1825-1828.
a) M. P. Kamps, S. S. Taylor, B. M. Sefton, Nature 1984, 310, 589-592;
b) D. A. Shannon, C. Gu, C. J. McLaughlin, M. Kaiser, R. A. van der
Hoorn, E. Weerapana, Chembiochem 2012, 13, 2327-2330; c) E. C.
Hett, H. Xu, K. F. Geoghegan, A. Gopalsamy, R. E. Kyne, C. A.
Menard, A. Narayanan, M. D. Parikh, S. Liu, L. Roberts, R. P.
Robinson, M. A. Tones, L. H. Jones, ACS Chem. Biol. 2015, 10, 1094-
1098; d) A. Narayanan, L. H. Jones, Chem. Sci. 2015, 6, 2650-2659.
a) T. Ikawa, T. Nishiyama, T. Nosaki, A. Takagi, S. Akai, Org. Lett.
2011, 13, 1730-1733; b) A. V. Bogolubsky, Y. S. Moroz, P. K.
Mykhailiuk, S. E. Pipko, A. I. Konovets, I. V. Sadkova, A. Tolmachev,
ACS Comb. Sci. 2014, 16, 192-197; c) M. K. Nielsen, C. R. Ugaz, W. Li,
A. G. Doyle, J. Am. Chem. Soc. 2015, 137, 9571-9574; d) P.
Mukherjee, C. P. Woroch, L. Cleary, M. Rusznak, R. W. Franzese, M.
R. Reese, J. W. Tucker, J. M. Humphrey, S. M. Etuk, S. C. Kwan, C. W.
Am Ende, N. D. Ball, Org. Lett. 2018, 20, 3943-3947; e) S. A. Zhersh,
O. P. Blahun, I. V. Sadkova, A. A. Tolmachev, Y. S. Moroz, P. K.
Mykhailiuk, Chem. Eur. J. 2018, 24, 8343-8349.
[3]
[4]
[5]
D. E. Fahrney, A. M. Gold, J. Am. Chem. Soc. 1963, 85, 997-1000.
a) J. Dong, L. Krasnova, M. G. Finn, K. B. Sharpless, Angew. Chem.
Int. Ed. 2014, 53, 9430-9448; b) Q. Zheng, J. Dong, K. B. Sharpless, J.
Org. Chem. 2016, 81, 11360-11362.
[6]
[7]
T. A. Bianchi, L. A. Cate, J. Org. Chem. 1977, 42, 2031-2032.
a) O. Lindner, L. Rodefeld, in Ullmann's Encyclopedia of Industrial
Chemistry, 2000; b) J. P. Bassin, R. J. Cremlyn, F. J. Swinbourne,
Phosphorus, Sulfur, and Silicon and the Related Elements 1991, 56,
245-275.
[8]
[9]
J. J. Krutak, R. D. Burpitt, W. H. Moore, J. A. Hyatt, J. Org. Chem.
1979, 44, 3847-3858.
a) H.-L. Qin, Q. Zheng, G. A. L. Bare, P. Wu, K. B. Sharpless, Angew.
Chem. Int. Ed. 2016, 55, 14155-14158; b) G. F. Zha, Q. Zheng, J. Leng,
P. Wu, H. L. Qin, K. B. Sharpless, Angew. Chem. Int. Ed. 2017, 56,
4849-4852; c) P. K. Chinthakindi, K. B. Govender, A. S. Kumar, H. G.
Kruger, T. Govender, T. Naicker, P. I. Arvidsson, Org. Lett. 2017, 19,
480-483.
[10] A. T. Davies, J. M. Curto, S. W. Bagley, M. C. Willis, Chem. Sci. 2017,
8, 1233-1237.
[11] A. L. Tribby, I. Rodriguez, S. Shariffudin, N. D. Ball, J. Org. Chem.
2017, 82, 2294-2299.
[12] G. Laudadio, A. A. Bartolomeu, L. Verwijlen, Y. Cao, K. T. de Oliveira,
T. Noel, J. Am. Chem. Soc. 2019, 141, 11832-11836.
[13] a) P. A. Clemons, N. E. Bodycombe, H. A. Carrinski, J. A. Wilson, A. F.
Shamji, B. K. Wagner, A. N. Koehler, S. L. Schreiber, Proc. Natl. Acad.
Sci. U S A 2010, 107, 18787-18792; b) F. Lovering, J. Bikker, C.
Humblet, J. Med. Chem. 2009, 52, 6752-6756; c) T. J. Ritchie, S. J.
Macdonald, Drug Discov. Today 2009, 14, 1011-1020.
[14] A. S. Barrow, C. J. Smedley, Q. Zheng, S. Li, J. Dong, J. E. Moses,
Chem. Soc. Rev. 2019, 48, 4731-4758.
This article is protected by copyright. All rights reserved.