Journal of the American Chemical Society
Article
Trials of Major Pharmaceutical Companies: New Structural Trends
and Therapeutic Areas. Chem. Rev. 2016, 116, 422−518.
(4) Preshlock, S.; Tredwell, M.; Gouverneur, V. 18F-Labeling of
Arenes and Heteroarenes for Applications in Positron Emission
Tomography. Chem. Rev. 2016, 116, 719−766.
(15) (a) Fuchigami, T. In Electrochemistry in the Preparation of
Fluorine and its Components; Ves Childs, W., Ed.; The Electro-
chemical Society: NJ, 1997; Vol. 97-15; pp 1−12. (b) Sartori, P.;
Ignat-Ev, N. The Actual State of Our Knowledge about Mechanism
of Electrochemical Fluorination in Anhydrous Hydrogen Fluoride
(Simons Process). J. Fluorine Chem. 1998, 87, 157−162. (c) Ignat-
Ev, N. V.; Willner, H.; Sartori, P. Electrochemical Fluorination
(Simons Process) - A Powerful Tool for the Preparation of New
Conducting Salts, Ionic liquids, and Strong Bronsted acids. J.
Fluorine Chem. 2009, 130, 1183−1191.
(5) Grushin, V. V. The Organometallic Fluorine Chemistry of Pa.
lladium and Rhodium: Studies toward Aromatic Fluorination. Acc.
Chem. Res. 2010, 43, 160−171.
(6) (a) Ball, N. D.; Sanford, M. S. Synthesis and Reactivity of a
Mono-σ-Aryl Palladium(IV) Fluoride Complex. J. Am. Chem. Soc.
2009, 131, 3796−3797. (b) Hickman, A. J.; Sanford, M. S. High-
Valent Organometallic Copper and Palladium in Catalysis. Nature
2012, 484, 177−185.
(16) Lee, E.; Hooker, J. M.; Ritter, T. Nickel-Mediated Oxidative
Fluorination for PET with Aqueous [18F] Fluoride. J. Am. Chem. Soc.
2012, 134, 17456−17458.
(7) For examples of fundamental studies conducted by Buchwald,
see: (a) Maimone, T. J.; Milner, P. J.; Kinzel, T.; Zhang, Y.; Takase,
M. K.; Buchwald, S. L. Evidence for In Situ Catalyst Modification
During the Pd-Catalyzed Conversion of Aryl Triflates to Aryl
Fluorides. J. Am. Chem. Soc. 2011, 133, 18106−18109. (b) Sather,
̈
(17) Lee, H.; Borgel, J.; Ritter, T. Carbon-Fluorine Reductive
Elimination from Nickel(III) Complexes. Angew. Chem., Int. Ed.
2017, 56, 6966−6969.
(18) Camasso, N. M.; Sanford, M. S. Design, Synthesis, and
Carbon-Heteroatom Coupling Reactions of Organometallic Nickel-
(IV) Complexes. Science 2015, 347, 1218−1220.
A. C.; Lee, H. G.; De La Rosa, V. Y.; Yang, Y.; Muller, P.;
̈
Buchwald, S. L. A Fluorinated Ligand Enables Room-Temperature
and Regioselective Pd-Catalyzed Fluorination of Aryl Triflates and
Bromides. J. Am. Chem. Soc. 2015, 137, 13433−13438.
(19) Bour, J. R.; Camasso, N. M.; Sanford, M. S. Oxidation of
Ni(II) to Ni(IV) with Aryl Electrophiles Enables Ni-Mediated Aryl-
CF3 Coupling. J. Am. Chem. Soc. 2015, 137, 8034−8037.
(20) Bour, J. R.; Camasso, N. M.; Meucci, E. A.; Kampf, J. W.;
Canty, A. J.; Sanford, M. S. Carbon-Carbon Bond-Forming
Reductive Elimination from Isolated Nickel(III) Complexes. J. Am.
Chem. Soc. 2016, 138, 16105−16111.
(8) For examples of fundamental studies conducted by Grushin,
see: (a) Fraser, S. L.; Antipin, M. Y.; Khroustalyov, V. N.; Grushin,
V. V. Molecular Fluoro Palladium Complexes. J. Am. Chem. Soc.
1997, 119, 4769−4770. (b) Pilon, M. C.; Grushin, V. V. Synthesis
and Characterization of Organopalladium Complexes Containing a
Fluoro Ligand. Organometallics 1998, 17, 1774−1781. (c) Grushin,
V. V. Thermal Stability, Decomposition Paths, and Ph/Ph Exchange
Reactions of [(Ph3P)2Pd(Ph)X] (X = I, Br, Cl, F, and HF2).
Organometallics 2000, 19, 1888−1900. (d) Grushin, V. V.; Marshall,
W. J. Ar-F Reductive Elimination from Palladium(II) Revisited.
Organometallics 2007, 26, 4997−5002.
(21) For select examples, see: (a) Omar-Amrani, R.; Thomas, A.;
Brenner, E.; Schneider, R.; Fort, Y. Efficient Nickel-Mediated
Intramolecular Amination of Aryl Chlorides. Org. Lett. 2003, 5,
2311−2314. (b) Zhang, C.-P.; Vicic, D. A. Nickel-Catalyzed
Synthesis of Aryl Trifluoromethyl Sulfides at Room Temperature.
J. Am. Chem. Soc. 2012, 134, 183−185. (c) Serrano, E.; Martin, R.
Nickel-Catalyzed Reductive Amidation of Unactivated Alkyl
Bromides. Angew. Chem., Int. Ed. 2016, 55, 11207−11211.
(d) Han, J.-B.; Dong, T.; Vicic, D. A.; Zhang, C.-P. Nickel-
Catalyzed Trifluoromethylselenolation of Aryl Halides Using the
Readily Available [Me4N][SeCF3] Salt. Org. Lett. 2017, 19, 3919−
3922.
(9) For select examples of fundamental studies by Ritter, see:
(a) Furuya, T.; Benitez, D.; Tkatchouk, E.; Strom, A. E.; Tang, P.;
Goddard, W. A.; Ritter, T. Mechanism of C-F Reductive Elimination
from Palladium(IV) Fluorides. J. Am. Chem. Soc. 2010, 132, 3793−
3807. (b) Brandt, J. R.; Lee, E.; Boursalian, G. B.; Ritter, T.
Mechanism of Electrophilic Fluorination with Pd(IV): Fluoride
Capture and Subsequent Oxidative Fluoride Transfer. Chem. Sci.
2014, 5, 169−179.
(22) Higgs, A. T.; Zinn, P. J.; Simmons, S. J.; Sanford, M. S.
Oxidatively Induced Carbon-Halogen Bond-Forming Reactions at
Nickel. Organometallics 2009, 28, 6142−6144.
(23) For select examples of high-valent Ni complexes supported by
these types of ligands, see: (a) Pandarus, V.; Zargarian, D. New
Pincer-Type Diphosphinito (POCOP) Complexes of NiII and NiIII.
Chem. Commun. 2007, 978−980. (b) Martinez, G. E.; Ocampo, C.;
Park, Y. J.; Fout, A. R. Accessing Pincer Bis(carbene) Ni(IV)
Complexes from Ni(II) via Halogen and Halogen Surrogates. J. Am.
Chem. Soc. 2016, 138, 4290−4293. (c) Schultz, J. W.; Fuchigami, K.;
Zheng, B.; Rath, N. P.; Mirica, L. M. Isolated Organometallic
Nickel(III) and Nickel(IV) Complexes Relevant to Carbon-Carbon
Bond Formation Reactions. J. Am. Chem. Soc. 2016, 138, 12928−
12934.
(10) For fundamental studies by Ribas, see: (a) Casitas, A.; Canta,
̀
M.; Sola, M.; Costas, M.; Ribas, X. Nucleophilic Aryl Fluorination
and Aryl Halide Exchange Mediated by a CuI/CuIII Catalytic Cycle.
J. Am. Chem. Soc. 2011, 133, 19386−19392. (b) Font, M.; Acuna-
Pares, F.; Parella, T.; Serra, J.; Luis, J.; Luis, J. M.; Lloret-Fillol, J.;
Costas, M.; Ribas, X. Direct Observation of Two-Electron Ag(I)/
Ag(III) Redox Cycles in Coupling Catalysis. Nat. Commun. 2014, 5,
4373−4382.
(11) For fundamental studies of Pt-mediated fluorination, see:
́
(a) Zhao, S.-B.; Wang, R.-Y.; Nguyen, H.; Becker, J. J.; Gagne, M.
R. Electrophilic Fluorination of Cationic Pt-Aryl Complexes. Chem.
Commun. 2012, 48, 443−445. (b) Dubinsky-Davidchik, I.; Goldberg,
I.; Vigalok, A.; Vedernikov, A. N. Selective Aryl-Fluoride Reductive
Elimination from a Platinum(IV) Complex. Angew. Chem., Int. Ed.
2015, 54, 12447−12541.
(24) For examples of NiIV-F complexes with similar 19F NMR
signals, see: (a) D’Accriscio, F.; Borja, P.; Saffon-Merceron, N.;
́
Fustier-Boutignon, M.; Mezailles, N.; Nebra, N. C-H Bond
Trifluoromethylation of Arenes Enabled by a Robust, High-Valent
Nickel(IV) Complex. Angew. Chem., Int. Ed. 2017, 56, 12898−
12902. (b) Chong, E.; Kampf, J. W.; Ariaford, A.; Canty, A. J.;
Sanford, M. S. Oxidatively Induced C-H Activation at High Valent
Nickel. J. Am. Chem. Soc. 2017, 139, 6058−6061. (c) Kosobokov,
M. D.; Sandleben, A.; Vogt, N.; Klein, A.; Vicic, D. A. Nitrogen-
Nitrogen Bond Formation via a Substrate-Bound Anion at a
Mononuclear Nickel Platform. Organometallics 2018, 37, 521−525.
(25) This was further confirmed by treating the crude product with
trifluoroacetic acid. Again, aryl fluoride 8 was formed based on GC
and GCMS analysis.
(12) Lee, E.; Kamlet, A. S.; Powers, D. C.; Neumann, C. N.;
Boursalian, G. B.; Furuya, T.; Choi, D. C.; Hooker, J. M.; Ritter, T.
A Fluoride-Derived Electrophilic Late-Stage Fluorination Reagent
for PET Imaging. Science 2011, 334, 639−642.
́
(13) Camasso, N. M.; Perez-Temprano, M. H.; Sanford, M. S.
C(sp3)-O Bond-Forming Reductive Elimination from PdIV with
Diverse Oxygen Nucleophiles. J. Am. Chem. Soc. 2014, 136, 12771−
12775.
(14) Marshall, W. J.; Grushin, V. V. Palladium(II) and
Palladium(0) Complexes of BINAP(O) (2-(Diphenylphosphino)-
2’-diphenylphosphinyl)-1,1’-binaphthyl). Organometallics 2003, 22,
555−562.
(26) For use of hydrazine in a similar reductive workup, see:
Aguilera, E. Y.; Sanford, M. S. Model Complexes for the Palladium-
F
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX