Page 3 of 5
Org aP nl ei ac s &e dB oi on mo to al ed cj uu sl at rm Ca hr ge imn si stry
Journal Name
COMMUNICATION
Relationship between peptides’ helicity and binding affinity. (D) Binding affinity of
peptide FITC-1b-5b and FITC-6.
chiral centre of CIH peptides showed significant influences on
DOI: 10.1039/C6OB02289H
The peptides’ cellular uptakes and stability were then
tested. Flow cytometry analysis was utilized to quantify the
cellular uptakes of peptides in Hela cells. The results clearly
backbone peptides’ helical contents, target binding affinity and
cellular uptakes. This proof-of-concept study unambiguously
showed that the CIH strategy provides a valuable in-tether
modification site without alterations in the backbone peptides.
This modification site could be utilized for various
modifications, biological applications and SAR studies of
peptide therapeutics. In addition, the CIH strategy provides a
unique way to study the function differences casted by soly
conformational differences between peptide epimers. Further
investigation of the in-tether modification site is undergoing in
the laboratory and will be reported in the due course.
indicated that peptide
uptakes than their
increment as shown in Fig. 5A. Confocal microscopy imaging
showed peptide epimers distributed diffusely into cell and
b
epimers showed better cellular
a
counterparts, with a 1.2-2.5 folds
b
the majority of peptides was localized in the cytoplasm.
Notably, a significant fraction of peptide 4b was also detected
in the nucleus (Fig. 5D and Fig. S3). For peptide 1-5b, their
permeability correlated relatively well with their helical
contents as shown in Fig. 5B. Again, peptide
shown in Fig. 5A and B. The relatively poor cellular uptake of
peptide may be explained by the tether hydrophobicity This work is supported by the Natural Science Foundation of China
difference. However, a conclusive elucidation of why peptide Grants 21372023 and 81572198; MOST 2015DFA31590, the
6 is an outliner as
6
6
’s high helical contents didn’t improve its target binding Shenzhen Science and Technology Innovation Committee
JSGG20140519105550503, JCYJ20150331100849958,
JCYJ20150403101146313, JCYJ20160301111338144,
JCYJ20160331115853521 and JSGG20160301095829250; the
Shenzhen Peacock Program KQTD201103.
affinity and cellular uptake is still absent and more persuasive
assays may need be developed for explanation.
The cyclic peptides’ stability was significantly enhanced
comparing with their linear analogue. Per the in vitro serum
stability assay shown in Fig. 5C, linear peptide precursor of
peptide 6, 6-linear degraded in a few hours, while peptides 1b
-
5
b
and
6
remained more than 60 percent intact after 24 hours.
Notes and references
D
FITC
Merge
1
.
(a) M. Pelay-Gimeno, A. Glas, O. Koch and T. N. Grossmann,
Angew. Chem. Int. Ed., 2015, 127, 9022-9054; (b) G. Zinzalla
and D. E. Thurston, Future. Med. Chem., 2009, 1, 65-93.
A
Blank
2
.
(a) Y. Azuma, T. Kükenshöner, G. Ma, J. Yasunaga, M. Imanishi,
G. Tanaka, I. Nakase, T. Maruno, Y. Kobayashi, K. M. Arndt, M.
Matsuoka and S. Futaki, Chem. Commun., 2014, 50, 6364-6367;
1b
(
4
b) H. Yin and A. D. Hamilton, Angew. Chem. Int. Ed., 2005, 44,
130-4163.
(a) B. N. Bullock, A. L. Jochim and P. S. Arora, J. Am. Chem. Soc.,
011, 133, 14220-14223; (b) J. H. Pease, R. W. Storrs and D. E.
2b
3
.
2
B
Wemmer, Proc. Natl. Acad. Sci. U.S.A, 1990, 87, 5643-5647; (c)
J. A. Kritzer, J. D. Lear, M. E. Hodsdon and A. Schepartz, J. Am.
Chem. Soc., 2004, 126, 9468-9469; (d) Y. H. Lau, A. P. De, Y. Wu
and D. R. Spring, Chem. Soc. Rev., 2015, 44, 91-102; (e) A. D. de
Araujo, H. N. Hoang, W. M. Kok, F. Diness, P. Gupta, T. A. Hill,
R. W. Driver, D. A. Price, S. Liras and D. P. Fairlie, Angew. Chem.
Int. Ed., 2014, 53, 6965-6969; (f) H. Zhao, Q. Liu, H. Geng, Y.
Tian, M. Cheng, Y. Jiang, M. Xie, X. Niu, F. Jiang, Y. Zhang, Y.
Lao, Y. Wu, N. Xu and Z. Li, Angew. Chem. Int. Ed., 2016, 55,
3
b
b
4
5
b
C
1
2088-12093; (g) A. M. Leduc, J. O. Trent, J. L. Wittliff, K. S.
Bramlett and S. L. Briggs, Proc. Natl. Acad. Sci. U.S.A, 2003,
100, 11273-11278; (h) H. Lin, Y. Jiang, Q. Zhang, K. Hu and Z. Li,
Chem. Commun., 2016, 52, 10389-10391; (i) S. A. Kawamoto,
A. Coleska, X. Ran, H. Yi, C. Yang and S. Wang, J. Med. Chem.,
6
2
012, 55, 1137-1146; (j) S. Cantel, A. Le Chevalier Isaad, M.
6-linear
Scrima, J. J. Levy, R. D. DiMarchi, P. Rovero, J. A. Halperin, A.
M. D Ursi, A. M. Papini and M. Chorev, J. Org. Chem., 2008, 73,
5
663-5674; (k) G. L. Verdine and G. J. Hilinski, Drug Discovery
Fig. 5 Permeability and stability of peptides. (A) Flow cytometry measurements of
Hela cells with 5 μM FITC-labelled peptides at 37 ℃ for 2h. (B) Relationship
between peptides’ helicity and permeability. (C) Serum stability measurements
with 100 μM FITC-labelled peptides at 37 ℃ for 0-24h. Percentage intact, mean ±
s. d. and n = 3. (D) Fluorescent confocal microscopy images of Hela cells treated
with 5 μM FITC-labelled peptides at 37 ℃ for 4h (DNA, blue (DAPI) peptides,
green (FITC)).
Today: Technol., 2012, 9, e41-e47; (l) Y. Kim, P. S. Kutchukian
and G. L. Verdine, Org. Lett, 2010, 12, 3046-3049; (m) C. E.
Schafmeister, J. Po and G. L. Verdine, J. Am. Chem. Soc., 2000,
122, 5891-5892; (n) H. Jo, N. Meinhardt, Y. Wu, S. Kulkarni, X.
Hu, K. E. Low, P. L. Davies, W. F. DeGrado and D. C.
Greenbaum, J. Am. Chem. Soc., 2012, 134, 17704-17713; (o) Y.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins