2790
J. Robertson et al.
LETTER
(5) Curran, D. P.; Chang, C. T. J. Org. Chem. 1989, 54, 3140.
(6) Forbes, J. E.; Tailhan, C.; Zard, S. Z. Tetrahedron Lett.
1990, 31, 2565.
(7) Ollivier, C.; Bark, T.; Renaud, P. Synthesis 2000, 1598.
(8) (a) Doyle, M. P.; Dyatkin, A. B.; Kalinin, A. V.; Ruppar, D.
A.; Martin, S. F.; Spaller, M. R.; Liras, S. J. Am. Chem. Soc.
1995, 117, 11021. (b) Ali, S. M.; Chapleo, C. B.; Finch, M.
A. W.; Roberts, S. M.; Woolley, G. T.; Cave, R. J.; Newton,
R. F. J. Chem. Soc., Perkin Trans. 1 1980, 2093.
O
O
O
O
H
H
O3, CH2Cl2;
DMS
(HOCH2)2,
TsOH, THF
18
H
H
CHO
O
19 (99%)
20 (90%)
O
O
O
(9) Bertrand, F.; Quiclet-Sire, B.; Zard, S. Z. Angew. Chem. Int.
Ed. 1999, 38, 1943.
O
O
H
acidic
treatment
H
NaH,
H
(10) DLP (100 mg, 0.25 mmol) was added every 2 h (3×) to a
MeOCHO,
THF
H
solution of iodide 8 (750 mg, 2.98 mmol) in dry
OH
O
chlorobenzene (40 mL) at 95 °C. After 7 h in total, a solution
of ethyl 2-phenylvinyl sulfone15 (1.75 g, 8.93 mmol) in
chlorobenzene (5 mL) was added and the reaction mixture
was heated at 145 °C. tert-Butyl peroxide was added every 2
h (3 × 100 mL) and the solution was heated at 145 °C for 16
h. The cooled solution was poured directly onto the top of a
silica gel column, and the column was flushed with
petroleum ether to remove chlorobenzene. Elution was then
continued with a 4:1 mixture of petroleum ether–EtOAc to
afford lactone 18 (390 mg, 57%) as colourless crystals after
recrystallisation from Et2O. Rf = 0.42 (3:1 petroleum ether–
EtOAc); mp 76–81 °C. IR (KBr disc): nmax = 2971 (m), 1779
(s), 1493 (w), 1448 (w), 1421 (w), 1357 (w), 1299 (w), 1248
(w), 1176 (s), 1042 (s), 974 (s), 898 (w), 752 (m), 696 (m)
cm–1. 1H NMR (400 MHz, CDCl3): d = 1.57–1.66 (1 H, m),
1.93–2.01 (1 H, m), 2.04–2.11 (1 H, m), 2.23–2.31 (1 H, m),
2.42–2.50 (1 H, m), 2.44 (1 H, dd, J = 18.8, 1.4 Hz), 2.57 (1
H, br q, apparent J = 8.0 Hz), 2.76 (1 H, dd, J = 18.8, 8.8 Hz),
4.99–5.08 (1 H, m), 6.08 (1 H, dd, J = 15.6, 7.6 Hz), 6.44 (1
H, d, J = 15.6), 7.21–7.36 (5 H, m, Ph). 13C NMR (100.6
MHz, CDCl3): d = 32.0, 34.1, 45.7, 49.6, 77.2, 85.8, 126.1,
127.5, 128.6, 130.6, 130.8, 136.8, 176.9. MS (CI, NH3):
O
O
H
OR
21 (51%)
TBDPSO
MeO
CO2Me
CO2Me
CO2Et
OH
OH
O
OH
O
O
22
23
24
O
O
O
Scheme 6
core structure, this investigation generated an efficient
synthesis of bicyclic compounds of general structure 5
[R = H, (CH2)6Cl; X = I, SC(S)OEt, CH=CHPh, CHO,
CH(OCH2CH2O)]. This chemistry, represented by the
retrosynthetic disconnection shown in Scheme 7 is a prac-
tical and efficient alternative to, for example, Stork’s rad-
ical cyclisation and trapping with tert-butylisocyanide,13
and tandem organometallic approaches.14
+
m/z (%) = 246 (100) [MNH4 ], 229 (25) [MH+], 169 (10), 87
(20), 70 (20). HRMS (CI): m/z calcd for C15H20NO2
+
[MNH4 ]: 246.1494; found: 246.1491.
(11) Compounds analogous to lactone 21 that lack oxygen-
containing functionality in the cyclopentane ring (cf. the
dioxolane in 21) exist, in general, as tautomeric mixtures.
Spectroscopic data for 21: Rf = 0.35 (EtOAc); mp 81–84 °C.
IR (KBr disc): nmax = 2967 (s), 2883 (m), 2740 (s), 1718 (s),
1682 (s), 1618 (s), 1420 (s), 1373 (m), 1198 (s), 1128 (s),
1074 (s), 1014 (s), 966 (m), 943 (m) cm–1. 1H NMR (500
MHz, CDCl3): d = 1.51–1.63 (1 H, m), 1.68–1.80 (1 H, m),
2.01–2.10 (1 H, m), 2.24–2.39 (2 H, m), 3.27 (1 H, ddd, J =
9.1, 6.8, 2.3 Hz), 3.95–4.03 and 4.09–4.16 (4 H, m), 4.86–
4.93 (1 H, m) overlaying 4.89 (1 H, d, J = 5.2 Hz), 7.44 (1 H,
dd, J = 14.1, 2.3 Hz), 9.13 (1 H, d, J = 14.1 Hz). 13C NMR
(125.7 MHz, CDCl3): d = 27.0, 33.5, 39.1, 49.0, 65.0, 65.1,
82.3, 105.6, 105.9, 154.6, 172.8. HRMS (ES): m/z calcd for
C11H13O5 [M – H]: 225.0763; found: 225.0754. NOE
experiment: Irradiation of the enolic hydroxyl proton at d =
9.13 ppm led to enhancement of the resonances at d = 3.27
(-CHC=), 3.95–4.03 and 4.09–4.16 (-OC2H4O-), 4.89
[-CH(OR)2], and 7.44 (=CHOH) ppm; irradiation of the
olefinic proton at d = 7.44 ppm led only to an enhancement
at d = 9.13 (=CHOH) ppm.
CHO
H
2 steps
O
O
I
O
O
H
Scheme 7
Acknowledgement
We are very grateful to AstraZeneca for an Industrial CASE Award
to MM, to the EPSRC Mass Spectrometry Service, Swansea for
high-resolution mass spectra, and to both AstraZeneca and Pfizer
for unrestricted research donations.
References
(1) Li, Y. S.; Matsunaga, K.; Ishibashi, M.; Ohizumi, Y. J. Org.
Chem. 2001, 66, 2165.
(2) Garlaschelli, L.; Vidari, G.; Zanoni, G. Tetrahedron 1992,
48, 9495.
(3) (a) This step is related to the proposed biosynthesis of the
iridoids; for a review of iridoid chemistry, including
biosynthetic aspects, see: El-Naggar, L. J.; Beal, J. L. J. Nat.
Prod. 1980, 43, 649. (b) For a pioneering total synthesis
based on this mode of dialdehyde cyclisation see: Büchi, G.;
Gubler, B.; Schneider, R. S.; Wild, J. J. Am. Chem. Soc.
1967, 89, 2776.
(12) Conditions attempted: CSA, THF; HCl, THF; HCl, acetone;
TsOH, MeOH; BF3·OEt2, CD2Cl2; Dowex, MeOH; CSA,
CD3OD. For further details, see ref. 4.
(13) Stork, G.; Sher, P. M. J. Am. Chem. Soc. 1983, 105, 6765.
(14) For example: Larock, R. C.; Lee, N. H. J. Am. Chem. Soc.
1991, 113, 7815.
(15) Truce, W. E.; Goralski, C. T. J. Org. Chem. 1971, 36, 2536.
(4) Ménard, M. DPhil Thesis; Oxford: UK, 2003.
Synlett 2004, No. 15, 2788–2790 © Thieme Stuttgart · New York