C
Synlett
J. Scharfbier, M. Oestreich
Letter
Acknowledgment
(10) Delvos, L. B.; Oestreich, M. Chim. Oggi 2013, 31, 74.
(11) (a) Vyas, D. J.; Oestreich, M. Angew. Chem. Int. Ed. 2010, 49,
M.O. is indebted to the Einstein Foundation (Berlin) for an endowed
professorship.
8513. (b) Delvos, L. B.; Vyas, D. J.; Oestreich, M. Angew. Chem. Int.
Ed. 2013, 52, 4650. (c) Hazra, C. K.; Irran, E.; Oestreich, M. Eur. J.
Org. Chem. 2013, 4903. (d) Delvos, L. B.; Hensel, A.; Oestreich, M.
Synthesis 2014, 46, 2957. (e) Delvos, L. B.; Oestreich, M. Synthesis
Supporting Information
2015, 47, 924.
(
(
12) Takeda, M.; Shintani, R.; Hayashi, T. J. Org. Chem. 2013, 78, 5007.
13) Cid, J.; Gulyás, H.; Carbó, J. J.; Fernández, E. Chem. Soc. Rev. 2012,
Supporting information for this article is available online at
http://dx.doi.org/10.1055/s-0035-1561407.
S
u
p
p
ortioIgnfrm oaitn
S
u
p
p
ortioIgnfrm oaitn
41, 3558.
(
14) (a) Yang, C.-T.; Zhang, Z.-Q.; Tajuddin, H.; Wu, C.-C.; Liang, J.;
Liu, J.-H.; Fu, Y.; Czyzewska, M.; Steel, P. G.; Marder, T.; Liu, L.
Angew. Chem. Int. Ed. 2012, 51, 528. (b) Ito, H.; Kubota, K. Org.
Lett. 2012, 14, 890. (c) Presset, M.; Fleury-Brégeot, N.; Oehlrich,
D.; Rombouts, F.; Molander, G. A. J. Org. Chem. 2013, 78, 4615.
15) (a) Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108,
References and Notes
(
1) Oestreich, M.; Hartmann, E.; Mewald, M. Chem. Rev. 2013, 113,
02.
4
(
(
2) (a) Sawamura, M.; Ito, H. In Copper-Catalyzed Asymmetric Syn-
thesis; Alexakis, A.; Krause, N.; Woodward, S., Eds.; Wiley-VCH:
Weinheim, 2014. (b) Hensel A., Oestreich M.; Top. Organomet.
Chem.; in press; doi: 10.1007/3418_2015_156.
2
916. (b) Rendler, S.; Oestreich, M. Angew. Chem. Int. Ed. 2007,
46, 498.
(
(
16) Dang, H.; Cox, N.; Lalic, G. Angew. Chem. Int. Ed. 2014, 53, 752.
17) (a) Kawachi, A.; Minamimoto, T.; Tamao, K. Chem. Lett. 2001, 30,
(
(
3) Hartmann, E.; Oestreich, M. Chim. Oggi 2011, 29, 34.
4) Suginome, M.; Matsuda, T.; Ito, Y. Organometallics 2000, 19,
1216. (b) Ito, H.; Horita, Y.; Yamamoto, E. Chem. Commun. 2012,
48, 8006. (c) Kleeberg, C.; Borner, C. Eur. J. Inorg. Chem. 2013,
2799.
4
647.
5) Hartmann, E.; Vyas, D. J.; Oestreich, M. Chem. Commun. 2011,
7, 7917.
6) (a) Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 2898.
b) Harb, H. Y.; Collins, K. D.; Garcia Altur, J. V.; Bowker, S.;
(
(
(
18) Copper-Catalyzed Nucleophilic Substitution of Functional-
4
ized Alkyl Triflates; General Procedure
A flame-dried Schlenk tube was charged with CuCN (1.1 mg, 5.0
mol%) and NaOt-Bu (36 mg, 1.5 equiv); when required,
tetracosane was added as internal standard at this stage. THF
was added (0.25 M), and the resulting solution was cooled to
(
Campbell, L.; Procter, D. J. Org. Lett. 2010, 12, 5446. (c) Pace, V.;
Rae, J. P.; Harb, H. Y.; Procter, D. J. Chem. Commun. 2013, 49,
5150. (d) Pace, V.; Rae, J. P.; Procter, D. J. Org. Lett. 2014, 16, 476.
0
(
°C. After 10 min, 1 (98 mg, 1.5 equiv) and the indicated triflate
0.25 mmol) were successively added. The purple solution was
maintained at 0 °C or room temperature for the indicated time
monitoring by GLC analysis). The reaction was then diluted
(e) Plotzitzka, J.; Kleeberg, C. Organometallics 2014, 33, 6915.
(
(
(
7) (a) Vercruysse, S.; Cornelissen, L.; Nahra, F.; Collard, L.; Riant, O.
Chem. Eur. J. 2014, 20, 1834. (b) Calderone, J. A.; Santos, W. L.
Angew. Chem. Int. Ed. 2014, 53, 4154. (c) Linstadt, R. T. H.;
Peterson, C. A.; Lippincott, D. J.; Jette, C. I.; Lipshutz, B. H. Angew.
Chem. Int. Ed. 2014, 53, 4159. (d) Xu, Y.-H.; Wu, L.-H.; Wang, J.;
Loh, T.-P. Chem. Commun. 2014, 50, 7195.
(
with MTBE (5 mL) and filtered through a short plug of silica gel,
followed by rinsing with MTBE (2 × 5 mL). The solvents were
evaporated under reduced pressure, and the crude material was
purified by flash chromatography on silica gel with the indi-
cated solvents as eluent (see the Supporting Information for
details). The tetraorganosilanes were obtained as colorless oils.
19) The current procedure was not applicable to secondary alkyl
bromides, iodides, and triflates as a result of facile elimination.
High and moderate conversion was obtained for bromides and
iodides, respectively, but only traces of the desired tetraorga-
nosilanes were detected by GLC analysis; triflates were gener-
ally too labile.
8) (a) Vyas, D. J.; Fröhlich, R.; Oestreich, M. Org. Lett. 2011, 13,
2094. (b) Hensel, A.; Nagura, K.; Delvos, L. B.; Oestreich, M.
Angew. Chem. Int. Ed. 2014, 53, 4964. (c) Mita, T.; Sugawara, M.;
Saito, K.; Sato, Y. Org. Lett. 2014, 16, 3028. (d) Zhao, C.; Jiang, C.;
Wang, J.; Wu, C.; Zhang, Q.-W.; He, W. Asian J. Org. Chem. 2014,
(
3, 851.
9) (a) Kleeberg, C.; Feldmann, E.; Hartmann, E.; Vyas, D. J.;
Oestreich, M. Chem. Eur. J. 2011, 17, 13538. (b) Cirriez, V.;
Rasson, C.; Hermant, T.; Petrignet, J.; Díaz Álvarez, J.; Robeyns,
K.; Riant, O. Angew. Chem. Int. Ed. 2013, 52, 1785.
©
Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–C