10.1002/chem.201902983
Chemistry - A European Journal
FULL PAPER
Commun. 2014, 50, 12131; j) A. M. Vibhute, V. Muvvala and K. M.
Sureshan, Angew. Chem. Int. Ed. 2016, 55, 7782; k) A. Prathap, K. M.
Sureshan, Angew. Chem. Int. Ed. 2017, 56, 9405.
C. R. S. Briggs, M. J. Allen, D. O'Hagan, D. J. Tozer, A. M. Z. Slawin,
A. E. Goeta, J. A. K. Howard, Org. Biomol. Chem. 2004, 2, 732.
[19] P. A. Champagne, J. Desroches, J-F. Paquin, Synthesis, 2015, 47,
306.
[8]
[9]
a) M. T. Cabrita, C. Vale, A. P. Rauter, Mar. Drugs, 2010, 8, 2301; b) G.
W. Gribble, Mar. Drugs, 2015, 13, 4044; c) B. Gál, C. Bucher, N. Z.
Burns, Mar. Drugs, 2016, 14, 206.
[20] a) A. Gavezzotti, Acc. Chem. Res. 1994, 27, 309; b) A. Gavezzotti, G.
Filippini, J. Phys. Chem. 1994, 98, 4831.
a) C. Nilewski, R. W. Geisser, M-O. Ebert, E. M. Carreira, J. Am.
Chem. Soc. 2009, 131, 15866; b) A. M. Bailey, S. Wolfrum, E. M.
Carreira, Angew. Chem. Int. Ed. 2016, 55, 639; c) S. Fisher, N.
Huwyler, S. Wolfrum, E. M. Carreira, Angew. Chem. Int. Ed. 2016, 55,
2555. For another example of chlorinated bioisostere synthesis see: d)
S. Krautwald, C. Nilewski, M. Mori, K. Shiomi, S. Omura, E. M. Carreira,
Angew. Chem. Int. Ed. 2016, 55, 4049.
[21] See Supporting information for details.
[22] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
[23] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel,
G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.
Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery,
Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N.
Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari,
A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.
M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R.
Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.
Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A.
D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J.
Fox, Gaussian, Inc., Wallingford CT, 2009.
[10] a) K. Muller, C. Faeh, F. Diederich, Science, 2007, 317, 1881; b) S.
Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev.
2008, 37, 320; c) D. O’Hagan, Chem. Soc. Rev. 2008, 37, 308; d) J.
Wanǵ M. Sanchez-Roselló J. L. Acená C. del Pozó A. E.
Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, Chem. Rev. 2014,
114, 2432; e) E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A.
Meanwell, J. Med. Chem., 2015, 58, 8315.
[11] a) R. Berger, G. Resnati, P. Metrangolo, E; Weberd, J. Hulliger, Chem.
Soc. Rev. 2011, 40, 3496. b) L. E. Zimmer, C. Sparr, R. Gilmour,
Angew. Chem. Int. Ed. 2011, 50, 11860; c) M. Aufiero, R. Gilmour, Acc.
Chem. Res. 2018, 51, 1701. After the initial submission of this
manuscript, the group of Gilmour recently published a paper studying
the reactivity of polyfluorinated polyols prepared in more than 10 steps,
see: d) P. Bentler, K. Bergander, C. G. Daniliuc, C. Mück-Lichtenfeld,
R. P. Jumde, A. K. H. Hirsch, R. Gilmour, Angew. Chem. Int. Ed. 2019,
DOI: 10.1002/anie.201905452.
[24] NBO 6.0. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E.
Carpenter, J. A. Bohmann, C. M. Morales, C. R. Landis, F. Weinhold
(Theoretical Chemistry Institute, University of Wisconsin, Madison, WI,
[25] For reviews, see: a) A. R. Hirst, B. Escuder, J. F. Miravet, D. K. Smith,
Angew. Chem. Int. Ed. 2008, 47, 8002; b) G. O. Lloyd, J. W. Steed,
Nature Chemistry, 2009, 1, 437; c) B. Escuder, F. Rodriguez-Llansola,
J. F. Miravet, New. J. Chem. 2010, 34, 1044; d) D. Diaz Diaz, D.
Kühbeck, R. J. Koopmans, Chem. Soc. Rev. 2011, 40, 427; e) L. E.
Buerkle, S. J. Rowan, Chem. Soc. Rev. 2012, 41, 6089; f) C. D. Jones,
J. W. Steed, Chem. Soc. Rev. 2016, 45, 6546; g) B. O. Okesola, D. K.
Smith, Chem. Soc. Rev. 2016, 45, 4226; h) W. Fang, Y. Zhang, J. Wu,
C. Liu, H. Zhu, T. Tu, Chem. Asian. J. 2018, 13, 712.
[12] For examples in drug design: a) J. Fried, E. F. Sabo, J. Am. Chem.
Soc. 1954, 76, 1455; b) A. G. Myers, J. K. Barbay, B. Zhong, J. Am.
Chem. Soc. 2001, 123, 7207; c) T. J. Graham, R. F. Lambert, K.
Ploessl, H. F. Kung, A. G. Doyle, J. Am. Chem. Soc., 2014, 136, 5291.
[13] a) J. Graton, Z. Wang, A-M. Brossard, D. Gonçalves Monteiro, J-Y. Le
Questel, B. Linclau, Angew. Chem. Int. Ed. 2012, 51, 6176; b) J.
Graton, G. Compain, F. Besseau, E. Bogdan, J. M. Watts, L.
Mtashobya, Z. Wang, A. Weymouth-Wilson, N. Galland, J-Y. Le
Questel, B. Linclau, Chem. Eur. J. 2017, 23, 2811.
[26] a) A. R. Hirst, D. K. Smith, J. P. Harrington, Chem. Eur. J. 2005, 11,
6552; b) P. Dastidar, Chem. Soc. Rev. 2008, 37, 2699; c) D. J. Adams,
K. Morris, L. Chen, L. C. Serpell, J. Basca, G. M. Day, Soft
Matter, 2010, 6, 4144; d) A. Vidyasagar, K. M. Sureshan, Angew.
Chem. Int. Ed. 2015, 54, 12078; e) M. Liu, G. Ouyang, D. Niu, Y. Sang,
Org. Chem. Front. 2018, 5, 2885.
[14] a) A. Quintard, J. Rodriguez, ACS Catal. 2017, 7, 5513; b) A. Quintard,
C. Sperandio, J. Rodriguez, Org. Lett., 2018, 20, 5274; c) A. Ricucci, J.
Rodriguez, A. Quintard, Eur. J. Org. Chem. 2018, 3697; d) A. Quintard,
J. Rodriguez, Chimia, 2018, 72, 580.
[15] These molecules posesses
4
acyclic stereogenic centers created
[27] See reference 7 and supporting information for details.
[28] For a recent review, see: N. Busschaert, C. Caltagirone, W. V. Rossom,
P. A. Gale, Chem. Rev. 2015, 115, 8038.
through disctinct steps. This results in the possible formation of multiply
stereoisomers. From the crude reactions mixture, it is difficult to identify
the exact dr and ee of the reaction but by fluorine NMR, the desired
adducts are formed with around 80% of the major diastereomer, a
stereoselectivity increased through purification.
Chem. Soc. Rev. 2011, 40, 1305; b) D. B. Hibbert, P. Thodarson,
Chem. Commun. 2016, 52, 12792.
[16] a) S. D. Halperin, R. Britton, Org. Biomol. Chem. 2013, 11, 1702.
Alternatively, non-halogenated 1,3,5-triols could also be accessed by a
reductive coupling we recently developed : b) A. Quintard, J.
Rodriguez, Org. Lett. 2019, 21, 453.
[30] Unfortunately, in the case of chlorohydrin 8g, the anion binding could
not be determined accurately due to a lower stability.
[31] See reference 3. We also confirmed this catalyst geometry by DFT
calculations, see the supporting information for details.
[17] The single crystal X-ray diffraction structures were deposited on the
Cambridge database under Nos. CCDC 1879983, CCDC 1879890 and
CCDC1879889.
[32] See R. P. Herrera, V. Sgarzani, L. Bernard, A. Ricci, Angew. Chem. Int.
Ed. 2005, 44, 6576; and references 3 and 5b.
[33] Diluting the reaction by a factor of two, the same reaction rate increase
is observed using fluorinated triol. This rules out possible rate increase
through aggregate formation. See SI for details.
[18] For studies related to fluorohydrin conformations: a) D. A. Dixon, B. E.
Smart, J. Phys. Chem. 1991, 95, 1609; b) R. J. Abraham, E. J.
Chambers, W. A. Thomas, J. Chem. Soc. Perkin Trans. 2, 1994, 949; c)
This article is protected by copyright. All rights reserved.