Organic Letters
Letter
(15) For a review on organic reactions catalyzed by clays, see: Laszlo, P.
Science 1987, 235, 1473−1477.
BD/69258/2010. Julia Jennings (UCD) is acknowledged for
technical assistance.
(16) Using the 5-methoxy-2-(4-methoxyphenyl)-4-methyloxazole
provided a complex mixture of regio- and diastereomers; however, the
major product was readily separable by column chromatography.
(17) Disubstituted alkylidene oxindoles such as diethyl 2-(1-acetyl-2-
oxoindolin-3-ylidene)malonate) and 2-(1-acetyl-2-oxoindolin-3-yli-
dene)malononitrile were determined to be unreactive. Both (E)-2-(1-
acetyl-2-oxoindolin-3-ylidene)acetonitrile and (E)-1-acetyl-3-benzyli-
deneindolin-2-one proceed with little or no selectivity.
(18) See the Supporting Information for standard deprotection
conditions.
(19) For examples of Lewis acid activated π-nucleophile additions to
alkylidene maolonates, see: (a) Liu, Y.; Shang, D.; Zhou, X.; Liu, X.;
Feng, X. Chem.Eur. J. 2009, 15, 2055−2058. (b) Wu, J.; Wang, D.;
Wu, F.; Wan, B. J. Org. Chem. 2013, 78, 5611−5617.
(20) For examples of asymmetric conjugate additions to coumarins,
see: (a) Teichert, J. F.; Feringa, B. L. Chem. Commun. 2011, 47, 2679−
2681. (b) Kuang, Y.; Liu, X.; Chang, L.; Wang, M.; Lin, L.; Feng, X. Org.
Lett. 2011, 13, 3814−3817.
(21) The reaction was sluggish using 20 mol % of TiCl4, and the
oxazole is prone to decomposition upon extended exposure to Lewis
acids.
REFERENCES
■
(1) For recent reviews on spirooxindoles see: (a) Badillo, J. J.; Hanhan,
N. V.; Franz, A. K. Curr. Opin. Drug Discovery Devel. 2010, 13, 758−776.
(b) Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Org. Biomol. Chem. 2012,
10, 5165−5181. (c) Cheng, D.; Ishihara, Y.; Tan, B.; Barbas, C. F. ACS
Catal. 2014, 743−762.
(2) For the synthesis of 3′-N-spirooxindole derivatives, see:
(a) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46,
8748−8758. (b) Viswambharan, B.; Selvakumar, K.; Madhavan, S.;
Shanmugam, P. Org. Lett. 2010, 12, 2108−2111. (c) Chen, X.-H.; Wei,
Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131,
13819−13825. (d) Antonchick, A. P.; Gerding-Reimers, C.; Catarinella,
M.; Schurmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Nat.
̈
Chem. 2010, 2, 735−740. (e) Cao, Y.; Jiang, X.; Liu, L.; Shen, F.; Zhang,
F.; Wang, R. Angew. Chem., Int. Ed. 2011, 9124−9127. (f) Marti, C.;
Carreira, E. M. Eur. J. Org. Chem. 2003, 2209−2219.
(3) For examples of biologically active 3′-N-containing spirooxindoles,
see: (a) Zhao, Y.; Liu, L.; Sun, W.; Lu, J.; McEachern, D.; Li, X.; Yu, S.;
Bernard, D.; Ochsenbein, P.; Ferey, V.; Carry, J.-C.; Deschamps, J. R.;
Sun, D.; Wang, S. J. Am. Chem. Soc. 2013, 135, 7223−7234. (b) Ding, K.;
Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.;
Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. J. Med. Chem.
2006, 49, 3432−3435. (c) Cui, C.-B.; Kakeya, H.; Osada, H. Tetrahedron
1996, 52, 12651−12666. (d) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.;
Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.;
Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. J. Am. Chem. Soc.
2005, 127, 10130−10131.
(22) For examples of asymmetric Lewis acid−BINOL-derived catalysts
for the addition of oxazoles to carbonyl compounds, see: (a) Suga, H.;
Ikai, K.; Ibata, T. J. Org. Chem. 1999, 64, 7040−7047. (b) Suga, H.; Shi,
X.; Ibata, T. J. Org. Chem. 1993, 58, 7397−7405.
(23) Hanhan, N. V.; Sahin, A. H.; Chang, T. W.; Fettinger, J. C.; Franz,
A. K. Angew. Chem., Int. Ed. 2010, 49, 744−747.
(24) Gutierrez, E. G.; Wong, C. J.; Sahin, A. H.; Franz, A. K. Org. Lett.
2011, 13, 5754−5757.
(4) Badillo, J. J.; Arevalo, G. E.; Fettinger, J. C.; Franz, A. K. Org. Lett.
2011, 13, 418−421.
(25) Ball-Jones, R. N.; Badillo, J. J.; Tran, T. T.; Franz, A. K. Angew.
Chem., Int. Ed. 2014, 53, 9462−9465.
(5) For additional studies reguarding the addition of oxazoles to
carbonyl compounds, see: (a) Suga, H.; Shi, X.; Fujieda, H.; Ibata, T.
Tetrahedron Lett. 1991, 32, 6911−6914. (b) Suga, H.; Fujieda, H.;
Hirotsu, Y.; Ibata, T. J. Org. Chem. 1994, 59, 3359−3364. (c) Yu, Z.-X.;
Wu, Y.-D. J. Org. Chem. 2003, 68, 421−432. (d) Evans, D. A.; Janey, J.
M.; Magomedov, N.; Tedrow, J. S. Angew. Chem., Int. Ed. 2001, 40,
1884−1888. For the synthesis of 5-methoxy-2-(4-methoxyphenyl)
oxazoles, see: (e) Mitchell, J. M.; Shaw, J. T. Angew. Chem., Int. Ed. 2006,
45, 1722−1726. (f) Li, P.; Evans, C. D.; Wu, Y.; Cao, B.; Hamel, E.;
Joulli, M. M. J. Am. Chem. Soc. 2008, 130, 2351−2364.
(26) The absolute stereochemistry of the major enantiomer for epi-3a
was assigned by analogy based on the selectivity observed for the
addition of allylsilanes to alkylidenes (see ref 25) to be 3S,4′R,5′S.
CCDC 1006412−1006414 contain the supplementary crystallographic
data. These data can be obtained free of charge from the Cambridge
(27) An alternative mechanism involving a Diels−Alder adduct
followed by ring opening could also be operable (see ref 7).
(28) See the Supporting Information for a proposed rationale to
explain the ligand-induced reversal of diastereoselectivity.
(6) Ibata, T.; Isogami, Y.; Nakawa, H.; Tamura, H.; Suga, H.; Shi, X.;
Fujieda, H. Bull. Chem. Soc. Jpn. 1992, 65, 1771−1778.
(7) Ibata, T.; Isogami, Y.; Nakano, S.; Nakawa, H.; Tamura, H. J. Chem.
Soc., Chem. Commun. 1986, 1692−1693.
(8) Reddy, P. V.; Bhat, S. V. Tetrahedron Lett. 1997, 38, 9039−9042.
(9) Hassner, A.; Fischer, B. Tetrahedron 1989, 45, 3535−3546.
(10) For an example of a cycloaddition between 1,3-oxazolium-5-olate
and coumarin, see: Cordaro, M.; Grassi, G.; Risitano, F.; Scala, A.
Tetrahedron 2010, 66, 2713−2717.
(11) (a) For the addition of azlactones to electron-deficient alkenes to
form 1-pyrrolines see: Melhado, A. D.; Amarante, G. W.; Wang, Z. J.;
Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 3517−3527. (b)
For a complementary chiral thiourea-catalyzed 1,3-dipolar cycloaddition
between azlactones and alkylidene oxindoles, see: Sun, W.; Zhu, G.; Wu,
C.; Li, G.; Hong, L.; Wang, R. Angew. Chem., Int. Ed. 2013, 52, 8633−
8637. For recent reviews on the use of azlactones as 1,3-dipoles, see:
(c) Fisk, J. S.; Mosey, R. A.; Tepe, J. J. Chem. Soc. Rev. 2007, 36, 1432−
1440. (d) Piperno, A.; Scala, A.; Risitano, F.; Scala, G. Cur. Org. Chem.
2014, 18, 2691−2710.
(12) For examples of Lewis acid activation of chealating substrates, see:
Evans, D. A.; Fandrick, K. R.; Song, H.-J.; Scheidt, K. A.; Xu, R. J. Am.
Chem. Soc. 2007, 129, 10029−10041.
(13) For reviews on Brønsted acid and small molecule hydrogen-
bonding catalysis, see: (a) Terada, M. Synthesis 2010, 1929−1982.
(b) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713−5743.
(14) MacDonald, J. P.; Shupe, B. H.; Schreiber, J. D.; Franz, A. K.
Chem. Commun. 2013, 50, 5242−5244.
D
dx.doi.org/10.1021/ol5028128 | Org. Lett. XXXX, XXX, XXX−XXX