ORGANIC
LETTERS
2
009
Vol. 11, No. 3
57-760
Use of 4-Cyanocoumarins as
Dienophiles in a Facile Synthesis of
Highly Substituted Dibenzopyranones
7
Michael E. Jung* and Damian A. Allen
Department of Chemistry and Biochemistry, UniVersity of California,
Los Angeles, California 90095
Received December 3, 2008
ABSTRACT
A new synthesis of dibenzopyranones 14 is reported via the Diels-Alder cycloaddition of 4-cyanocoumarins 12 with 1-silyloxydienes 10 to
give the adducts 13 which are then converted into 14 in one step via treatment with base and loss of the cyano and silyloxy groups.
Dibenzopyranones serve as the structural core for many
natural products including the structurally similar compounds
Scheme 1
autumnariol, autumnariniol, altenuisol, and alternariol (Scheme
1
1
, 1). They also occur in a number of natural antitumor
and antibiotic agents such as the gilvocarcins, ravidomycins,
2
and chrysomycins (Scheme 1, 2). In addition, dibenzopy-
ranones have been used as intermediates in the syntheses of
several pharmaceutically interesting compounds including
3
progesterone, androgen, and glucocorticoid receptor agonists
4
and endothelial cell proliferation inhibitors. There are several
(
1) (a) Sidwell, W. T. L.; Fritz, H.; Tamm, C. HelV. Chim. Acta 1971,
5
5
1
4, 207. (b) Raistrick, H.; Stilkings, C. E.; Thomas, R. Biochemistry 1953,
5, 421. (c) Pero, R. W.; Harvan, D.; Blois, M. C. Tetrahedron Lett. 1973,
4, 945.
methods for the synthesis of dibenzopyranones, with most
involving a Suzuki cross-coupling reaction followed by metal
5
(
2) (a) Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am.
or Lewis acid mediated lactonization. More recently the tert-
butyl-lithium-mediated cyclization of bromobenzylfluorophe-
Chem. Soc. 1994, 116, 1004. (b) McGee, L. R.; Confalone, P. N. J. Org.
Chem. 1988, 53, 3695. (c) Findlay, J. A.; Daljeet, A.; Murray, P. J.; Rej,
R. N. Can. J. Chem. 1987, 65, 427. (d) Hart, D. J.; Merriman, G. H.; Young,
D. G. J. Tetrahedron 1996, 52, 14437. (e) James, C. A.; Snieckus, V.
Tetrahedron Lett. 1997, 38, 8149. (f) Parker, K. A.; Coburn, C. A. J. Org.
Chem. 1991, 56, 1666.
(4) Schmidt, J. M.; Tremblay, G. B.; Page, M.; Mercure, J.; Feher, M.;
Dunn-Dufault, R.; Peter, M. G.; Redden, P. R. J. Med. Chem. 2003, 46,
1289.
(
3) (a) Edwards, J. P.; West, S. J.; Marschke, K. B.; Mais, D. E.;
Gottardis, M.; Jones, T. K. J. Med. Chem. 1998, 41, 303. (b) Hamann,
L. G.; Higuchi, R. I.; Zhi, L.; Edwards, J. P.; Wang, X.; Marschke, K. B.;
Kong, J. W.; Farmer, L. J.; Jones, T. K. J. Med. Chem. 1998, 41, 623. (c)
Coghlan, M. J.; Kym, P. R.; Elmore, S. W.; Wang, A. X.; Luly, J. R.;
Wilcox, D.; Stashko, M.; Lin, C. W.; Miner, J.; Tyree, C.; Nakane, M.;
Jacobson, P.; Lane, B. C. J. Med. Chem. 2001, 44, 2879.
(5) (a) Kemperman, G. J.; Ter Horst, B.; Van de Goor, D.; Roeters, T.;
Bergwerff, J.; van der Eem, R.; Basten, J. Eur. J. Org. Chem. 2006, 61,
3169. (b) Thasana, N.; Worayuthakarn, R.; Kradanrat, P.; Hohn, E.; Young,
L.; Ruchirawat, S. J. Org. Chem. 2007, 72, 9379. (c) Hussain, I.; Nguyen,
V. T. H.; Yawer, M. A.; Dang, T. T.; Fischer, C.; Reinke, H.; Langer, P.
J. Org. Chem. 2007, 72, 6255.
10.1021/ol802792g CCC: $40.75
Published on Web 01/12/2009
2009 American Chemical Society