Organometallics
Communication
catalyst. Finally, extending the conditions to longer chain fatty
acids, myristic acid (C ) and stearic acid (C ), produced
2015, 8, 1585−1592. (c) Maetani, S.; Fukuyuma, T.; Suzuki, N.;
Ishihara, D.; Ryu, I. Organometallics 2011, 30, 1389−1394. (d) Liu, Y.;
Kim, K. E.; Herbert, M. B.; Fedorov, A.; Grubbs, R. H.; Stoltz, B. M.
Adv. Synth. Catal. 2014, 356, 130−136. (e) Miranda, M. O.;
Pieterangelo, A.; Hillmyer, M. A.; Tolman, W. B. Green Chem. 2012,
1
4
18
tridecene(s) and heptadecene(s) in 77% and 66% yields,
respectively. Given the high volatility of TMDS relative to the
other components of the mixture, these reactions were
performed in a closed Schlenk tube and as a result gave
relatively low α selectivity (<5%) since the olefin was not
removed from the reaction mixture; isomerization to the more
thermodynamically favored internal alkenes was implicated.
Analysis of the headspace volume in NiI /PPh deoxygena-
1
4, 490−494. (f) Kraus, G. A.; Riley, S. Synthesis 2012, 44, 3003−
3
005. (g) Le Notre, J.; Scott, E. L.; Franssen, M. C. R.; Sanders, J. P.
̂
M. Tetrahedron Lett. 2010, 51, 3712−3715. (h) Gooβen, L. J.;
Rodríguez, N. Chem. Commun. 2004, 724−725. (i) Miller, J. A.;
Nelson, J. A.; Byrne, M. P. J. Org. Chem. 1993, 58, 18−20. (k) John, A.;
2
3
̃
Miranda, M. O.; Ding, K.; Dereli, B.; Ortuno, M. A.; LaPointe, A. M.;
tion of nonanoic acid under standard reaction conditions tested
Coates, G. W.; Cramer, C. J.; Tolman, W. B. Organometallics 2016, 35,
2391−2400. (l) Maetani, S.; Fukuyuma, T.; Suzuki, N.; Ishihara, D.;
1
5,13
positive for CO but not for CO2,
a decarbonylation pathway.
suggesting that it follows
̂
Ryu, I. Chem. Commun. 2012, 48, 2552−2554. (m) Le Notre, J.; Scott,
E. L.; Franssen, M. C. R.; Sanders, J. P. M. Green Chem. 2011, 13,
07−809.
4) John, A.; Hogan, L. T.; Hillmyer, M. A.; Tolman, W. B. Chem.
Commun. 2015, 51, 2731−2733.
5) (a) Han, J.; Sun, H.; Ding, Y.; Lou, H.; Zheng, X. Green Chem.
010, 12, 463−467. (b) Gosselink, R. W.; Stellwagen, D. R.; Bitter, J.
H. Angew. Chem., Int. Ed. 2013, 52, 5089−5092. (c) Peng, B.; Zhao,
C.; Kasakov, S.; Foraita, S.; Lercher, J. A. Chem. - Eur. J. 2013, 19,
4732−4741. (d) Wang, C.; Tian, Z.; Wang, L.; Xu, R.; Liu, Q.; Qu, W.;
Ma, H.; Wang, B. ChemSusChem 2012, 5, 1974−1983. (e) Peng, B.;
Yuan, X.; Zhao, C.; Lercher, J. A. J. Am. Chem. Soc. 2012, 134, 9400−
In conclusion, we have identified a method for deoxygenating
8
(
fatty acids to alkenes where PPh serves as a terminal reductant
3
and no exogenous acid-activating species is needed. The
reaction is catalyzed by simple nickel salts under solvent-free
conditions. Ni(II) precatalysts were found to be superior to
(
2
Ni(0) counterparts, and by using Ni(OAc) high yields (up to
2
8
2%) and α selectivity (up to 70%) could be achieved. The
reaction can be run at a low loading of NiI (0.1 mol %),
2
achieving a high turnover number (TON) of 340. The
deoxygenation reaction can be rendered catalytic in PPh by
3
9
405. (f) Sun, K. Y.; Wilson, A. R.; Thompson, S. T.; Lamb, H. H.
ACS Catal. 2015, 5, 1939−1948.
6) Li, W.; Gao, Y.; Yao, S.; Ma, D.; Yan, N. Green Chem. 2015, 17,
198−4205.
7) (a) Zachos, I.; Gabmeyer, S. K.; Bauer, D.; Sieber, V.; Hollmann,
using TMDS and Cu(OTf) , albeit to form a mixture of olefin
2
products under the reaction conditions used.
(
4
(
ASSOCIATED CONTENT
Supporting Information
■
*
S
F.; Kourist, R. Chem. Commun. 2015, 51, 1918−1921. (b) Grant, J. L.;
Hsieh, C. H.; Makris, T. M. J. Am. Chem. Soc. 2015, 137, 4940−4943.
(c) Dennig, A.; Kuhn, M.; Tassoti, S.; Thiessenhusen, A.; Gilch, S.;
Butler, T.; Haas, T.; Hall, M.; Faber, K. Angew. Chem., Int. Ed. 2015,
5
4, 8819−8822. (d) Rude, M. A.; Baron, T. S.; Brubaker, S.; Alibhai,
M.; Del Cardayre, S. B.; Schirmer, A. Appl. Environ. Microbio. 2011, 77,
718−1727.
8) (a) Handbook of Reagents for Organic Synthesis, Oxidizing and
1
(
AUTHOR INFORMATION
Reducing Agent; Burke, S. D., Danheiser, R. L., Eds.; Wiley: Hoboken,
NJ, 1999. (b) Raju, S.; van Slagmaat, C. A. M. R.; Li, J.; Lutz, M.;
Jastrzebski, J. T. B. H.; Moret, M. − E.; Klein Gebbink, R. J. M.
Organometallics 2016, 35, 2178−2187. (c) Sousa, S. C. A.; Fernandes,
A. C. Coord. Chem. Rev. 2015, 284, 67−92. (d) Boucher-Jacobs, C.;
Nicholas, K. M. Top. Curr. Chem. 2014, 353, 163−184.
■
*
*
ORCID
(
9) (a) Mitsunobu, O.; Yamada, M.; Mukaiyama, T. Bull. Chem. Soc.
Notes
Jpn. 1967, 40, 935−939. (b) Mitsunobu, O.; Yamada, M. Bull. Chem.
Soc. Jpn. 1967, 40, 2380−2382. (c) Appel, R. Angew. Chem., Int. Ed.
Engl. 1975, 14, 801−811. (d) Staudinger, H.; Meyer, J. Helv. Chim.
The authors declare no competing financial interest.
Acta 1919, 2, 635−646. (e) Wittig, G.; Scho
7, 1318−1330. (f) Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654−
1666.
́
10) (a) Herault, D.; Nguyen, D. H.; Nuel, D.; Buono, G. Chem. Soc.
̈
llkopf, U. Chem. Ber. 1954,
8
ACKNOWLEDGMENTS
■
(
Funding for this work was provided by the Center for
Sustainable Polymers at the University of Minnesota, a
National Science Foundation (NSF) supported Center for
Chemical Innovation (CHE-1413862).
Rev. 2015, 44, 2508−2528. (b) Li, Y.; Lu, L. − Q.; Das, S.; Pisiewicz,
S.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2012, 134, 18325−18329.
(c) Li, Y.; Das, S.; Zhou, S.; Junge, K.; Beller, M. J. Am. Chem. Soc.
2
012, 134, 9727−9732. (d) Busacca, C. A.; Raju, R.; Grinberg, N.;
Haddad, N.; James-Johns, P.; Lee, H.; Lorenz, J. C.; Saha, A.;
Senanyake, C. H. J. Org. Chem. 2008, 73, 1524−1531. (e) Berthod, M.;
Favre-Reguillon, A.; Mohamad, J.; Mignani, G.; Docherty, G.; Lemaire,
M. Synlett 2007, 2007, 1545−1548. (f) Wu, H. − C.; Yu, J. − Q.;
Spencer, J. B. Org. Lett. 2004, 6, 4675−4678.
(11) For a recent example see: Wang, L.; Xie, Y. − B.; Huang, N. −
Y.; Yan, J. − Y.; Hu, W. − M.; Liu, M. − G.; Ding, M. − W. ACS Catal.
2016, 6, 4010−4016.
(12) On the basis of the results of GC-MS analysis, TMDS is
converted to a mixture of cyclic silyl ethers.
REFERENCES
1) (a) Dapsens, P. Y.; Mondelli, C.; Per
■
(
2
́
ez-Ramírez, J. ACS Catal.
012, 2, 1487−1499. (b) Corma, A.; Iborra, S.; Velty, A. Chem. Rev.
2
007, 107, 2411−2502. (c) Ragauskas, A. J.; Williams, C. K.; Davison,
B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J., Jr.;
Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.;
Templer, R.; Tschaplinski, T. Science 2006, 311, 484−489.
(
2) (a) Dawes, G. J. S.; Scott, E. L.; No
̂
tre, J. L.; Sanders, J. P. M.;
Bitter, J. H. Green Chem. 2015, 17, 3231−3250. (b) Santillan-Jimenez,
E.; Crocker, M. J. J. Chem. Technol. Biotechnol. 2012, 87, 1041−1050.
(13) (a) CO test: the headspace was analyzed by passing through a
2
(
7
3) (a) Foglia, T. A.; Barr, P. A. J. Am. Oil Chem. Soc. 1976, 53, 737−
solution of Ba(OH) . No precipitation indicative of the formation of
2
41. (b) Ternel, J.; Lebarbe,
́
T.; Monflier, E.; Hapiot, F. ChemSusChem
BaCO was observed. (b) CO test: the gas in the headspace was
3
C
Organometallics XXXX, XXX, XXX−XXX