4,4′-Bis-(1-phenylquinolin-2(1H)-one), 1c. Mp > 400 °C dec
coupling methods. Gratifyingly, we were pleased to find that
both microwave-assisted coupling methods were also applicable
to the more commonly used hetero(aryl) bromide substrates,
such as 3-bromoquinoline, 2-bromothiophene, and 1-bromonaph-
thalene (Table 3). Without any further optimization, good to
excellent yields of the corresponding bis(hetero)aryls were
obtained. Again, the Pd-catalyzed one-pot borylation/Suzuki
cross-coupling conditions generally provided somewhat higher
product yields (ca. 90%) compared with those of the Ni-
mediated Ullmann homocoupling procedure.
In summary, we have developed two generally applicable
high-speed methods for the preparation of symmetrical (hetero)-
biaryls using either Pd(0)-catalyzed cross-coupling or Ni(0)-
mediated homocoupling principles. The procedures are particu-
larly valuable for the preparation of novel types of bisquinolones,
which are presently under investigation as fluorescent probes
in our laboratories. Results from these studies will be published
elsewhere. We are currently investigating alternative catalytic
cross- and homocoupling protocols to access unsymmetrical
bisquinolones.
1
(CCl4); IR (KBr) νmax 1661 cm-1; H NMR (360 MHz, CDCl3) δ
6.81 (d, J ) 8.4 Hz, 2H), 6.91 (s, 2H), 7.14 (t, J ) 7.6 Hz, 2H),
7.38-7.45 (m, 8H), 7.60 (t, J ) 7.4 Hz, 2H), 7.68 (t, J ) 7.6 Hz,
4H); 13C NMR (90 MHz, CDCl3) δ 116.6, 119.4, 122.4, 122.6,
127.0, 128.9, 129.2, 130.4, 130.9, 137.4, 141.2, 147.0, 161.5; MS
(positive APCI, m/z) 441 [25, (M + 1)], 440 (100, M).
4,4′-Bis-(6-methoxy-1-methylquinolin-2(1H)-one), 1d. Mp 256-
1
258 °C (ethanol); IR (KBr) νmax 1648 cm-1; H NMR (360 MHz,
DMSO-d6) δ 3.58 (s, 6H), 3.69 (s, 6H), 6.57 (d, J ) 2.8 Hz, 2H),
6.66 (s, 2H), 7.34 (dd, J ) 9.3 and 2.8 Hz, 2H), 7.62 (d, J ) 9.3
Hz, 2H); 13C NMR (90 MHz, DMSO-d6) δ 29.8, 55.8, 110.0, 115.9,
119.4, 120.4, 122.5, 134.7, 145.5, 154.8, 161.1; MS (positive APCI,
m/z) 377 [25, (M + 1)], 376 (100, M).
4,4′-Bis-(7-methoxy-1-methylquinolin-2(1H)-one), 1e. Mp 232-
1
234 °C (ethanol); IR (KBr) νmax 1658 cm-1; H NMR (360 MHz,
DMSO-d6) δ 3.67 (s, 6H), 3.89 (s, 6H), 6.45 (s, 2H), 6.76 (d, J )
8.7 Hz, 2H), 7.04-7.07 (m, 4H); 13C NMR (90 MHz, CDCl3) δ
29.8, 56.2, 99.7, 110.8, 113.5, 117.9, 128.8, 142.0, 146.3, 161.5,
162.3; MS (positive APCI, m/z) 377 [25, (M + 1)], 376 (100, M).
Anal. Calcd for C22H20N2O4: C, 70.20; H, 5.36; N, 7.44. Found:
C, 70.23; H, 5.26; N, 7.37.
4,4′-Bis-(6,7-dimethoxy-1-methylquinolin-2(1H)-one), 1f. Mp
1
276-277 °C dec (ethanol); IR (KBr) νmax 1642 cm-1; H NMR
Experimental Section
(360 MHz, DMSO-d6) δ 3.45 (s, 6H), 3.74 (s, 6H), 3.96 (s, 6H),
6.46 (s, 2H), 6.57 (s, 2H), 7.09 (s, 2H); 13C NMR (90 MHz, CDCl3)
δ 30.0, 56.2, 56.4, 97.6, 108.2, 112.7, 119.1, 136.1, 145.2, 145.8,
152.8, 162.0; MS (positive APCI, m/z) 437 [50, (M + 1)], 436
(100, M).
General Procedure for the One-Pot Borylation/Suzuki Cross-
Coupling of Haloarenes (Method A, Table 3). A mixture
containing 0.30 mmol of the corresponding haloarene (Table 3),
24.5 mg (0.03 mmol, 10 mol %) of PdCl2(dppf), 11.6 mg (0.021
mmol, 7 mol %) of dppf, 53.3 mg (0.21 mmol, 0.7 equiv) of bis-
(pinacolato)diboron, and 75.7 mg (1.35 mmol, 4.5 equiv) of finely
crushed KOH powder (analytical grade) was suspended in 2.0 mL
of anhydrous 1-chlorobutane under an argon atmosphere in a 5 mL
microwave vial (Pyrex) equipped with a magnetic stirring bar. The
vial was sealed, stirred for 4 min at room temperature, and then
heated for 35 min at 130 °C (see Table 3 for deviations). Thereafter,
the solvent was removed under reduced pressure. The product was
directly isolated by gradient dry flash chromatography, using
appropriate solvents. For yields, see Table 3.
General Procedure for the Homocoupling of Haloarenes
(Method B, Table 3). A mixture containing 0.25 mmol of the
corresponding haloarene (Table 3), 42.1 mg (0.325 mmol, 1.3 equiv)
of anhydrous NiCl2, 262.3 mg (1 mmol, 4.0 equiv) of PPh3, 21.2
mg (0.324 mmol, 1.3 equiv) of Zn powder (<60 µm particle size),
and 74.7 mg (0.45 mmol, 1.8 equiv) of KI was suspended in 1.5
mL anhydrous DMF under an argon atmosphere in a 5 mL
microwave vial (Pyrex) equipped with a magnetic stirring bar. The
vial was sealed, stirred for 4 min at room temperature, and then
heated for 25 min at 205 °C. Thereafter, the solvent was removed
under reduced pressure. The product was isolated by gradient dry
flash chromatography using appropriate solvents. For yields, see
Table 3.
4,4′-Bis-(2H-chromen-2-one). Mp 215-216 °C (acetonitrile;
1
lit.19 215 °C); H NMR (360 MHz, CDCl3) δ 6.50 (s, 2H), 7.22-
7.24 (m, 4H), 7.47 (d, J ) 8.4 Hz, 2H), 7.60-7.65 (m, 2H). MS
(positive APCI, m/z) 291 [95, (M + 1)], 290 (45, M), 252 [100,
(M - 38)], 236 (M - 54).
1
3,3′-Bisquinoline. Mp 269-271 °C (ethanol; lit.20 271 °C); H
NMR (360 MHz, CDCl3) δ 7.70 (t, J ) 7.25 Hz, 2H), 7.85 (t, J )
7.42 Hz, 2H), 8.01 (d, J ) 8.0 Hz, 2H), 8.29 (d, J ) 8.4 Hz, 2H),
8.57 (s, 2H), 9.33 (s, 2H). MS (positive APCI, m/z) 257 [20, (M +
1)], 256 (100, M).
2,2′-Bisthiophene. Mp 30-32 °C (diethyl ether; lit.21 32-34
1
°C); H NMR (360 MHz, CDCl3) δ 7.02 (dd, J ) 3.70 and 4.95
Hz, 2H), 7.19-7.24 (m, 4H). MS (positive APCI, m/z) 166 (100,
M).
1,1′-Bisnaphthalene. Mp 158-159 °C (acetone; lit.22,23 158.8-
159 °C); 1H NMR (360 MHz, CDCl3) δ 7.29-7.32 (m, 2H), 7.40
(d, J ) 8.40 Hz, 2H), 7.47-7.52 (m, 4H), 7.59-7.63 (m, 2H),
7.96 (dd, J ) 3.00 and 8.10 Hz, 4H).
Acknowledgment. This work was supported by the Austrian
Science Fund (FWF, P15582, and I18-N07). J.H. thanks the
Higher Education Commission of Pakistan for a scholarship.
We also thank Biotage AB (Uppsala, Sweden) for the provision
of an Initiator 8 microwave reactor and W. Stadlbauer for
assistance in obtaining the quinolone precursors.
4,4′-Bis-(1-methylquinolin-2(1H)-one), 1a. Mp 283-284 °C
(acetonitrile). IR (KBr) νmax 1648 cm-1 1H NMR (360 MHz,
;
DMSO-d6) δ 3.71 (s, 6H), 6.67 (s, 2H), 7.11-7.17 (m, 4H), 7.64-
7.67 (m, 4H); 13C NMR (90 MHz, DMSO-d6) δ 29.8, 115.8, 119.6,
121.6, 122.7, 127.3, 131.8, 140.2, 146.1, 160.9; MS (positive APCI,
m/z) 317 [25, (M + 1)], 316 (100, M). Anal. Calcd for
C20H16N2O2: C, 75.93; H, 5.10; N, 8.86. Found: C, 75.95; H, 4.98;
N, 8.78.
Supporting Information Available: Materials and methods,
experimental procedures, and H NMR spectra. This material is
1
JO052283P
(19) Deshmukh, R. S. K.; Paradkar, M. V. Synth. Commun. 1988, 18,
589-596.
(20) Uyeda, K. J. Pharm. Soc. Jpn. 1931, 51, 495-501; Chem. Abstr.
1931, 25, 5427.
(21) Nishihara, Y.; Ikegashira, K.; Toriyama, F.; Mori, A.; Hiyama, T.
Bull. Chem. Soc. Jpn. 2000, 73, 985.
(22) Ibuki, E.; Ozasa, S.; Fujioka, Y.; Mizutani, H. Bull. Chem. Soc.
Jpn. 1982, 55, 845-851.
(23) Collet, A.; Brienne, M. J.; Jacques, J. Bull. Soc. Chim. Fr. 1972, 1,
127-142.
7,7′-Bis-(2,3-dihydro-1H,5H-pyrido[3,2,1-ij]quinolin-5-one),
1
1b. Mp 270 °C dec (acetonitrile); IR (KBr) νmax 1637 cm-1; H
NMR (360 MHz, DMSO-d6) δ 2.02-2.13 (m, 4H), 2.99 (t, J )
5.7 Hz, 4H), 4.13 (t, J ) 5.7 Hz, 4H), 6.62 (s, 2H), 6.96 (d, J )
7.6 Hz, 2H), 7.02 (t, J ) 7.6 Hz, 2H), 7.40 (d, J ) 7.0 Hz, 2H);
13C NMR (90 MHz, DMSO-d6) δ 20.6, 27.8, 42.6, 119.7, 121.4,
121.9, 125.3, 125.4, 130.5, 136.8, 146.4, 161.2; MS (positive APCI,
m/z) 368 (100, M).
1710 J. Org. Chem., Vol. 71, No. 4, 2006