Page 5 of 6
The Journal of Organic Chemistry
research fellowship. We sincerely thank Dr. R. V. Ramana Reddy for
DBU (760 ꢁL, 5.102 mmol) was added and stirred at 140 °C for 24
hrs. After which the reaction mixture was subjected to a water
workup and washed with chloroform twice. Organic layer was colꢀ
lected over anhydrous sodium sulphate and concentrated under
reduced pressure. Crude mixture was subjected to silicaꢀgel column
chromatography for purification. After repetitive columns, pure
compound was obtained in chloroform/ethylacetate solvent mixꢀ
1
2
3
4
5
6
7
8
help in DFT calculations. We acknowledge CRESTꢀMHRDꢀFAST,
IISER Bhopal for funding, and IISER Bhopal for facilities and infraꢀ
structure.
REFERENCES
(1) (a) Facchetti, A. Semiconductors for organic transistors Mater. Toꢀ
day 2007, 10, 28. (b) Wu, W.; Liu, Y.; Zhu, D. πꢀConjugated moleꢀ
cules with fused rings for organic fieldꢀeffect transistors: design, synꢀ
thesis and applications Chem. Soc. Rev. 2010, 39, 1489. (c) Anthony,
J. E.; Facchetti, A.; Heeney, M.; Marder, S. R.; Zhan, X. n‐Type orꢀ
1
ture in 20% (71 mg) yield. H NMR (500 MHz, CDCl3, 298K) δ
(ppm) 8.47 (d,
J
= 7.9 Hz, 4H), 8.34 (d,
J = 8.0 Hz, 4H), 4.19 –
4.12 (m, 4H), 3.52 (t,
J
= 7.1 Hz, 4H), 3.38 (m, 4H), 2.53 – 2.47
9
(m, 4H), 1.99 – 1.89 (m, 4H), 1.69ꢀ1.64 (m, 12H). 13C NMR (176
MHz, CDCl3, 298K) δ (ppm) 175.9, 163.4, 134.7, 131.5, 129.4,
126.4, 123.2, 123.1, 49.5, 45.9, 38.5, 37.4, 30.1, 28.7, 26.8, 23.5.
HRMS (APCI) m/z: [M+H]+ calcd for C42H41N4O6 697.3021;
found 697.3032. IR stretching frequencies (cmꢀ1) 2927, 2855, 1690,
1651, 1592, 1440, 1356, 808. The ORTEP diagram and structure
refinement data of compound 3 were provided in supporting inꢀ
formation (Figure S23 & Table S1).
ganic semiconductors in organic electronics Adv. Mater. 2010, 22
,
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
3876. (d) Zhao, Y.; Guo, Y.; Liu, Y. 25th Anniversary article: recent
advances in nꢀtype and ambipolar organic fieldꢀeffect transistors Adv.
Mater. 2013, 25, 5372. (e) Gsänger, M.; Bialas, D.; Huang, L.; Stolte,
M.; Würther, F. Organic semiconductors based on dyes and color
pigment Adv. Mater. 2016, 28, 3615. (f) Quinn, J. T. E.; Zhu, J.; Li,
X.; Wang, J.; Li, Y. Recent progress in the development of nꢀtype orꢀ
ganic semiconductors for organic fieldꢀeffect transistors J. Mater.
Chem. C 2017, 5, 8654.
Compound ArꢀPBI:18 Synthetic procedure is same as that of comꢀ
pound 1 using 2,6ꢀdiisopropylaniline. Yield 72% (1306 mg). 1H
(2) (a) Würthner, F. Perylene bisimide dyes as versatile building blocks
for functional supramolecular architectures Chem. Commun. 2004,
1564. (b) Wasielewski, M. R. Energy, charge, and spin transport in
molecules and selfꢀassembled nanostructures inspired by photosynꢀ
thesis J. Org. Chem. 2006, 71, 5051.
(3) (a) Li, C.; Wonneberger, H. Perylene Imides for organic photovoltaꢀ
ics: yesterday, today, and tomorrow Adv. Mater. 2012, 24, 613. (b)
Kozma, E.; Catellani, M. Perylene diimides based materials for organꢀ
ic solar cells Dyes and Pigments 2013, 98, 160. (c) Wu, Y.; Zhang, Q.;
Gao, X. Nonꢀfullerene small molecule acceptors based on perylene
NMR (500 MHz, CDCl3, 298K) δ (ppm) 8.73 (d,
J
= 7.9 Hz, 4H),
= 7.8
8.68 (d, = 7.9 Hz, 4H), 7.44 (t, = 7.8 Hz, 2H), 7.29 (d, J
J
J
Hz, 4H), 2.69 (m, 4H), 1.12 (mixed singlets, 24H). 13C NMR (126
MHz, CDCl3, 298K) δ (ppm) 163.5, 145.6, 135.1, 132.1, 130.5,
130.2, 129.7, 126.8, 124.1, 123.4, 123.3, 29.2, 24.0. HRMS (APCI)
m/z: [M+H]+ calcd for C48H42N2O4 711.3217; found 711.3191.
Compound 4: Synthetic procedure is same as that of compound 2
using ArꢀPBI. Yield 26% (63 mg). 1H NMR (500 MHz, CDCl3,
253K) δ (ppm) 8.71ꢀ8.65 (merged doublets, 2H), 8.61 – 8.50 (m,
diimides J. Mater. Chem. A 2016, 4, 17604.
(4) Zhan, X.; Facchetti, A.; Barlow, S.; Marks, T. J.; Ratner, M. A.;
Wasielewski, M. R.; Marder, S. R. Rylene and related diimides for orꢀ
ganic electronics Adv. Mater. 2011, 23, 268.
(5) (a) Zhang, L.; Che, Y.; Moore, J. S. Oneꢀdimensional selfꢀassembly of
planar πꢀconjugated molecules: adaptable building blocks for organic
nanodevices Acc. Chem. Res. 2008, 41, 1596. (b) Kaloo, M. A.; Mishꢀ
ra, R.; Sankar, J. Perylenebisimideꢀbased multiꢀmodal cyanide recogꢀ
nition: molecular logic gate deciphering magnetic memory units J.
3H), 7.63 (d,
7.28 (m, 4H), 4.57 – 4.44 (m, 1H), 3.95 (t,
(d, = 11.0 Hz, 1H), 3.55 – 3.46 (m, 2H), 3.45 – 3.38 (m, 1H),
J
= 8.0 Hz, 1H), 7.47 (merged triplets, 2H), 7.38 –
J
= 12.6 Hz, 1H), 3.84
J
3.05 – 2.82 (m, 2H), 2.80 – 2.67 (m, 2H), 2.66 – 2.54 (m, 1H),
2.21 – 2.04 (m, 2H), 1.88 (m, 4H), 1.61 (broad s, 1H), 1.14 (broad
m, 24H). 13C NMR (126 MHz, CDCl3, 298K) δ (ppm) 164.7,
164.1, 164.1, 163.6, 155.2, 145.7, 142.4, 136.7, 136.5, 134.4, 132.5,
131.3, 131.3, 131.1, 130.7, 130.1, 129.6, 129.4, 127.7, 126.9, 126.9,
125.8, 124.1, 123.9, 123.9, 121.8, 121.1, 121.0, 120.8, 119.5, 118.5,
102.9, 94.8, 52.7, 47.3, 46.9, 29.7, 29.2, 29.1, 27.6, 27.3, 24.6, 24.1,
24.1, 24.0, 23.9, 23.3. HRMS (APCI) m/z: [M+H]+ calcd for
C57H55N4O4 859.4218; found 859.4248.
Mater. Chem. C 2015, 3, 1640.
(6) (a) Peneva, K.; Mihov, G.; Nolde, F.; Rocha, S.; Hotta, J. –I.;
Braeckmans, K.; Hofkens, J.; UjiꢀI, H.; Herrmann, A.; Müllen, K. Waꢀ
terꢀsoluble monofunctional perylene and terrylene dyes: powerful laꢀ
bels for singleꢀenzyme tracking Angew. Chem. Int. Ed. 2008, 47
,
3372. (b) Davis, M.; Jung, C.; Wallis, P.; Schnitzler, T.; Li, C.; Mülꢀ
len, K.; Bräuchle, C. Photophysics of new photostable rylene derivaꢀ
tives: applications in singleꢀmolecule studies and membrane labelling
ChemPhysChem. 2011, 12, 1588. (c) Sun, M.; Müllen, K.; Yin, M.
Waterꢀsoluble perylenediimides: design concepts and biological apꢀ
plications Chem. Soc. Rev. 2016, 45, 1513.
ASSOCIATED CONTENT
Supporting Information
(7) Würthner, F.; SahaꢀMöller, C. R.; Fimmel, B.; Ogi, S.; Leowanawat,
P.; Schmidt, D. Perylene bisimide dye assemblies as archetype funcꢀ
tional supramolecular materials Chem. Rev. 2016, 116, 962.
(8) (a) Huang, C.; Barlow, S.; Marder, S. R. Peryleneꢀ3,4,9,10ꢀ
tetracarboxylic acid diimides: synthesis, physical properties, and use
in organic electronics J. Org. Chem. 2011, 76, 2386. (b) Mishra, R.;
Lim, J. M.; Son, M.; Panini, P.; Kim, D.; Sankar, J. Tuning the elecꢀ
tronic nature of mono‐bay alkynyl–phenyl‐substituted perylene bisiꢀ
mides: synthesis, structure, and photophysical properties Chem. Eur.
Synthetic scheme of precursor, NMR, mass, IR, Frontier MOs, crystalꢀ
lographic data, absorption and fluorescence switching spectra have
been provided. The Supporting Information is available free of charge
on the ACS Publications website.
AUTHOR INFORMATION
J
. 2014, 20, 5576. (c) Shoaee, S.; Eng, M. P.; An, Z.; Zhang, X.; Barꢀ
Corresponding Author
low, S.; Marder, S. R.; Durrant, J. R. Inter versus intraꢀmolecular phoꢀ
toinduced charge separation in solid films of donor–acceptor moleꢀ
cules Chem. Commun. 2008, 4915.
ACKNOWLEDGMENT
(9) Avlasevich, Y.; Li, C.; Mullen, K. Synthesis and applications of coreꢀ
enlarged perylene dyes J. Mater. Chem. 2010, 20, 3814.
(10) (a) Usta, H.; Newman, C.; Chen, Z.; Facchetti, A. Dithienocoroꢀ
nenediimideꢀbased copolymers as novel ambipolar semiconductors
The authors thankfully acknowledge Prof. Alakesh Bisai, IISER Bhopal
and a reviewer for their insightful suggestions on the mechanism of
formation of the compounds. RR thanks DSTꢀINSPIRE for a senior
ACS Paragon Plus Environment