6 A. Akelah and D. C. Sherrington, Chem, Rev., 1981, 81, 557.
Ar-H). (*Smaller peaks were present at these positions due to
the presence of the 4-isomer.) Found C, 80.2; H, 9.6; N, 5.1;
C20H29NO requires C, 80.2; H, 9.8; N, 4.7%. CI MS: m/z
300 (M ϩ H)ϩ.
7 A. Akelah and D. C. Sherrington, Polymer, 1983, 24, 1369.
8 P. Hodge, Annu. Rep. Prog. Chem., Sect. B, Org. Chem., 1986, 283.
9 P. Hodge, Chem. Soc. Rev., 1997, 26, 417.
10 C. Dreisbach, G. Wischnewski, U. Kragl and C. Wandrey, J. Chem.
Soc., Perkin Trans. 1, 1995, 875.
11 P. Hodge, in Innovation and Perspectives in Solid Phase Synthesis,
ed. R. Epton, SPCC (UK) Ltd., Birmingham, 1990, pp. 273–292.
12 R. Noyori, Asymmetric Catalysis in Organic Synthesis, John Wiley,
New York, 1994.
Synthesis of polymer 20
Polymerisation of monomers 19 using the procedure given
above for the synthesis of polymer 9 gave polymer 20. It had
[α]D Ϫ9.8 (c = 2.3, CHCl3); νmax 3341 (O–H), 1606 (C᎐C), 1041
13 G. Liu and J. A. Ellman, J. Org. Chem., 1995, 60, 7712.
14 S. R. Gilbertson and X. Wang, Tetrahedron Lett., 1996, 37, 6475.
15 B. M. Cole, K. D. Shimizu, C. A. Krueger, J. P. A. Harrity, M. L.
Snapper and A. H. Horveyda, Angew. Chem., Int. Ed. Engl., 1996,
35, 1668.
16 S. Itsuno and J. M. J. Frechet, J. Org. Chem., 1987, 52, 4140.
17 K. Soai, S. Niwa and M. Watanabe, J. Org. Chem., 1988, 53, 927.
18 K. Soai, S. Niwa and M. Watanabe, J. Chem. Soc., Perkin Trans. 1,
1989, 109.
19 K. Soai and M. Watanabe, J. Chem. Soc., Chem. Commun., 1990,
43.
20 S. Itsuno, Y. Sakurai, K. Ito, T. Maruyama, S. Nakahama and J. M.
J. Frechet, J. Org. Chem., 1990, 55, 304.
21 M. Watanabe, S. Araki, Y. Butsugan and M. Uemura, Chem.
Express, 1990, 5,761.
22 Z. Zhang, P. Hodge and P. W. Stratford, React. Polym., 1991, 15, 71.
23 M. Watanabe and K. Soai, J. Chem. Soc., Perkin Trans. 1, 1994, 837.
24 D. Seebach, R. E. Marti and T. Hintermann, Helv. Chim. Acta,
1996, 79, 1710.
25 K. Soai and S. Niwa, Chem. Rev., 1992, 92, 833.
26 K. Soai, M. Watanabe and A. Yamamoto, J. Org. Chem., 1990, 55,
4832.
27 K. Burgess and D. Lim, Chem. Commun., 1997, 785.
28 L. Canali, E. Cowan, H. Deleuze, C. L. Gibson and D. C.
Sherrington, Chem. Commun., 1998, 2561.
29 M. Kitamura, S. Okada, S. Suga and R. Noyori, J. Am. Chem. Soc.,
1989, 111, 4028.
30 R. Noyori and M. Kitamura, Angew. Chem., Int. Ed. Engl., 1991, 30,
49.
31 G. E. Coates and D. Ridley, J. Chem. Soc. (A), 1966, 1064.
32 P. A. Chaloner and E. Langadianou, Tetrahedron Lett., 1990, 31,
5185.
33 N. Oguni and T. Omi, Tetrahedron Lett., 1984, 25, 2823.
34 A. H. Alberts and H. Wynberg, J. Am. Chem. Soc., 1989, 111, 7264.
35 D. J. Gravert and D. K. Janda, Chem. Rev., 1997, 97, 489.
36 F. Villedon-Denaide, P. Lecavalier and J. M. J. Frechet, Polym. Bull.,
1986, 15, 491.
᎐
(C–O), 820 (2 adjacent Ar-H) and 796 cmϪ1 (3 adjacent Ar-H);
δ (500 MHz) 0.7–0.9 (br, 3H,C-8, CH3) 0.9–1.2 (br, 6H, C-9,
C-10 CH3), 1.2–2.2 (br, 11H, backbone, N-CH3, C-4, CH, C-5
and C-6 CH2), 2.3–2.6 (br, 1H, CHN), 3.3–3.7 (br, 2H,
Ar- CH2), 4.2–4.7 (br, 1H, CHO) and 5.9–7.1 ppm (br, 4H,
Ar-H). Found C, 80.7; H, 8.7; N, 5.1: C20H29NO3 requires C,
80.2; H, 9.8; N, 4.7%. By GPC it had Mn = 3300, Mw = 5700.
Synthesis of polymer 21
Copolymerisation of monomers 19 with an equimolar amount
of styrene using the procedure given above for the synthesis of
polymers 10 gave copolymer 21. It had [α]D Ϫ8.4 (c = 2.3,
CHCl3); νmax 3379 (O–H), 1604 (C᎐C), 1041 (C–O), 820 (2
᎐
adjacent Ar-H) and 796 cmϪ1 (3 adjacent Ar-H), 759 and 701
ppm (5 adjacent Ar-H); δ (500 MHz) 0.7–0.9 (br, 3H, C-8,
CH3), 0.9–1.2 (br, 6H, C-9 and C-10 CH3), 1.2–2.2 (br, 11H,
backbone, N-CH3, C-4, CH, C-5 and C-6, CH2), 2.3–2.6 (br,
1H, CHN), 3.4–3.7 (br, 2H, Ar-CH2), 4.2–4.8 (br, 1H, CH0) and
6.0–7.2 ppm (br, 9H, Ar-H). By elemental analysis it contained
2.86 mmol N per g corresponding to a composition of 67%
monomers 19 and 33% styrene. By GPC it had Mn = 3800,
Mw = 8200.
Synthesis of polymer 22
This polymer was prepared from 1% crosslinked polystyrene
beads (0.70 mmol chlorine per g) and amino alcohol 17 using
the procedure described above for the preparation of polymer
12a. By elemental analysis it contained 0.64 mmol of nitrogen
per g.
37 B. Marx, E. Henry-Basch and P. Freon, C. R. Seances Acad. Sci.,
Ser. C., 1967, 264, 1967.
38 D. C. Sherrington, Chem. Commun., 1998, 2275.
39 N. R. Cameron and D. C. Sherrington, Adv. Pol. Sci., 1996, 126,
163.
40 M. Kitamura, S. Suga, K. Kawai and R. Noyori, J. Am. Chem.
Soc., 1986, 108, 6071.
Acknowledgements
We thank the SERC/EPSRC for financial support and CASE
Awards (for D. W. L. S. and P. W. S.) in collaboration with
Zeneca (Blackley).
41 R. Noyori, S. Suga, K. Kawai, S. Okada, M. Kitamura, N. Oguni,
M. Hayashi, T. Kaneko and Y. Matsuda, J. Organomet. Chem, 1990,
382, 19.
42 R. H. Pickard and J. Kenyon, J. Chem. Soc., 1914, 1115.
43 J. Capillon and J. Guétte, Tetrahedron, 1979, 35, 1817.
44 A. A. Smaardijk and H. Wynberg, J. Org. Chem., 1987, 52, 135.
45 M. P. Bonner and E. R. Thornton, J. Am. Chem. Soc., 1991, 113,
1299.
References
1 R. B. Merrifield, J. Am. Chem. Soc., 1963, 85, 2149.
2 Polymer-supported Reactions in Organic Synthesis, eds. P. Hodge and
D. C. Sherrington, John Wiley, Chichester, 1980.
3 Polymeric Reagents and Catalysts, ed. W. T. Ford, ACS Symposium
Series 308, Washington, 1986.
4 Syntheses and Separations Using Functional Polymers, eds. D. C.
Sherrington and P. Hodge, John Wiley, Chichester, 1988.
5 A. Akelah and A. Moet, Functionalised Polymers and Their
Applications, Chapman and Hall, London, 1990.
46 R. M. Chittenden and G. H. Cooper, J. Chem. Soc (C), 1970, 49.
Paper 9/01455A
1472
J. Chem. Soc., Perkin Trans. 1, 1999, 1463–1472