738
H.-p. Shi et al. / Spectrochimica Acta Part A 81 (2011) 730–738
Table 4
The fluorescence quantum yields (Ф) and the fluorescence lifetimes (ꢄ, ns) of three compounds in different polar solvents.
Solvents
Fluorescence quantum yields (Ф)
Fluorescence lifetime (ꢄ, ns)
Compound 3
Compound 4
Compound 5
Compound 3
Compound 4
Compound 5
Hexane
0.34
0.54
0.56
0.42
0.37
0.19
0.14
0.22
0.17
0.22
0.12
0.08
0.19
0.46
0.44
0.43
0.38
0.36
0.32
3.66
3.98
4.11
4.15
4.15
2.12
4.13
2.43
2.68
2.76
2.69
2.74
1.70
2.73
1.49
1.65
1.67
1.75
1.73
1.29
1.80
Dichloromethane
Chloroform
Acetone
Acetonitrile
Methanol
DMSO
The fluorescence decay behaviors of three compounds were also
studied in several solvents. The decay profile of compound (3) was
shown in Fig. S3 as representative. Fig. S3 is placed in supporting
information. The fluorescence lifetimes (ꢄ, ns) were collected in
Table 4. For three compounds, the fluorescence decay curves were
mono-exponential model.
[6] S. Wakim, J. Bouchard, J. Bouchard, N. Blouin, A. Michaud, M. Leclerc, Org. Lett.
6 (2004) 3413–3416.
[7] S. Martin, K. Klaus, H. Doris, S. Peter, S. Sepas, D.L. Dago, Chem. Mater. 17 (2005)
3031–3039.
[8] D. Nicolas, F.M. Jean, L. Nicolas, W. Salem, T. Ye, L. Mario, Adv. Funct. Mater. 15
(2005) 1671–1682.
[9] J.F. Morin, M. Leclerc, Macromolecules 35 (2002) 8413–8417.
[10] V.I. Adamovich, S.R. Cordero, P.I. Djurovich, A. Tamayo, M.E. Thompson, B.W.
D’Andrade, S.R. Forrest, Org. Electron. 4 (2003) 77–87.
[11] A.V. Dijken, J.J.A.M. Bastiaansen, N.M.M. Kiggen, B.M.W. Langeveld, C. Rothe,
A. Monkman, I. Bach, P. Stossel, K. Brunner, J. Am. Chem. Soc. 126 (2004)
7718–7727.
[12] J.F. Morin, N. Drolet, Y. Tao, M. Leclerc, Chem. Mater. 16 (2004) 4619–4626.
[13] K.R. Justin Thomas, M. Velusamy, J.T. Lin, Y.T. Tao, C.H. Chuen, Adv. Funct. Mater.
14 (2004) 387–392.
5. Conclusions
In this paper, three new D––A type compounds, namely
9-(4-(benzothiazol-2-yl)phenyl)-9H-carbazole
(2-(benzothiazol- 2-yl)vinyl)phenyl)-9H-carbazole (4) and
9-(4-(4-(benzothiazol-2-yl)styryl) phenyl)-9H-carbazole (5)
(3),
9-(4-
[14] K. Brunner, A.V. Dijken, H. Borner, J.J.A.M. Bastiaansen, N.M.M. Kiggen, B.M.W.
Langeveld, J. Am. Chem. Soc. 126 (2004) 6035–6042.
[15] Y. Yamaguchi, T. Ochi, S. Miyamura, T. Tanaka, S. Kobayashi, T. Wakamiya, Y.
Matsubara, Z. Yoshida, J. Am. Chem. Soc. 128 (2006) 4504–4505.
[16] J. Ding, J. Gao, Y. Cheng, Z. Xie, L. Wang, D. Ma, X. Jing, F. Wang, Adv. Funct.
Mater. 16 (2006) 575–581.
[17] Y. Liu, M. Ishiura, Y. Wang, Z.J. Hou, J. Am. Chem. Soc. 128 (2006) 5592–5593.
[18] D. Cao, Z. Liu, G. Li, G. Liu, G. Zhang, J. Mol. Struct. 874 (2008) 46–50.
[19] W.A. Pisarski, A.S. Swinarew, M. Czaja, B. Piekarnik, Z. Grobelny, V. Getautis,
J.V. Grazulevicius, T. Niedziela, B. Trzebicka, A. Stolarzewicz, J. Mol. Struct. 887
(2008) 205–208.
[20] X. Zhang, H. Zhang, J. Xiang, Q. Li, Q. Yang, Q. Shang, Y. Zhang, Y. Tang, J. Mol.
Struct. 982 (2010) 133–138.
[21] S. Hooda, A.K. Goyal, A.S. Brar, J. Mol. Struct. 963 (2010) 27–34.
[22] B. Zaidi, N. Bouzayen, J. Wéry, K. Alimi, J. Mol. Struct. 971 (2010) 71–80.
[23] J. Han, Y. Wei, J. Mol. Struct. 968 (2010) 32–35.
[24] S. Mukherjee, A.K. Bauri, S. Bhattacharya, J. Mol. Struct. 965 (2010) 101–108.
[25] Y. Qian, Dyes Pigments 76 (2008) 277–281.
[26] H. Chen, X. Xu, H. Yan, X. Cai, Y. Li, Q. Jiang, M. Xie, Chin. Chem. Lett. 18 (2007)
1496–1500.
[27] H. Wang, G. Chen, X. Xu, H. Chen, S. Ji, Dyes Pigments 86 (2010) 238–248.
[28] O. Loboda, R. Zales’ny, A. Avramopoulos, J.M. Luis, B. Kirtman, N. Tagmatarchis,
H. Reis, M.G. Papadopoulos, J. Phys. Chem. A 113 (2009) 1159–1170.
[29] Z. Zhao, X. Xu, X. Chen, X. Wang, P. Lu, G. Yu, Y. Liu, Tetrahedron 64 (2008)
2658–2668.
were synthesized and characterized by elemental analysis, NMR,
MS and thermogravimetric analysis. The calculated absorption
and emission wavelengths are well coincident with the measured
data. The calculated reorganization energy for hole and electron
indicates that three compounds are in favor of hole transport than
electron transport. The calculated lowest-lying absorption spectra
can be mainly attributed to intramolecular charge transfer (ICT).
And the calculated fluorescence spectra can be mainly described
as originating from an excited state with intramolecular charge
transfer (ICT) character. The results show that three compounds
exhibited excellent thermal stability and high fluorescence quan-
tum yields, indicating their potential application as excellent
optoelectronic material in optical field. Such studies are currently
under way in our laboratory, and the results will be released soon.
Acknowledgements
This work was supported by Shanxi Province scientific and
technological project (No. 20100321085) and Fund of Key Labo-
ratory of Optoelectronic Materials Chemistry and Physics, Chinese
Academy of Sciences (No. 2011KL004). All the calculations have
been performed using the advanced computing facilities of super-
computing center of computer network information center of
Chinese Academy of Sciences. All the authors express their deep
thanks.
[30] C. Buchanan, S.H. Tucher, J. Chem. Soc. (1958) 2750–2755.
[31] J. Wu, Y. Pan, X. Zhang, T. Sun, Y. Tian, J. Yang, Z. Chen, Inorg. Chim. Acta 360
(2007) 2083–2091.
[32] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864–B871.
[33] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133–A1138.
[34] J.B. Foresman, M.H. Gordon, J.A. Pople, M.J. Frisch, J. Phys. Chem. 96 (1992)
135–149.
[35] M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Chem. Phys. 114 (2001)
5691–5701.
[36] M. Cossi, G. Scalmani, N. Rega, V. Barone, J. Chem. Phys. 117 (2002)
43–54.
[37] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
J.A. Montgomery, T. Vreven Jr., K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J.
Tomasi, V. Barone, B. Mennucci, M. Cossi, B. Scalmani, G.N. Rega, G.A. Petersson,
H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T.
Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian,
J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J.
Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A.
Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman,
J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A.
Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham,
C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen,
M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian, Inc., Pittsburgh PA, 2003.
[38] M. Belletete, J.F. Morin, M. Leclerc, G. Durocher, J. Phys. Chem. A 109 (2005)
6953–6959.
Appendix A. Supplementary data
Supplementary data associated with this article can be found, in
References
[1] J.C. Mastrangelo, B.M. Conger, S.H. Chen, A. Bashir Hashemi, Chem. Mater. 9
(1997) 227–232.
[2] B.M. Conger, D. Katsis, J.C. Mastrangelo, S.H. Chen, J. Phys. Chem. A 102 (1998)
9213–9218.
[3] K. Parimal, K.R. Justin Thomas, T.L. Jiann, Y.T. Tao, C.H. Chien, Adv. Funct. Mater.
13 (2003) 445–452.
[4] B. Akira, O. Ken, K. Wolfgang, C.A. Rigoberto, J. Phys. Chem. B 108 (2004)
18949–18955.
[5] S. Wakim, J. Bouchard, M. Simard, N. Drolet, Y. Tao, M. Leclerc, Chem. Mater. 16
(2004) 4386–4388.
[39] R.A. Marcus, Rev. Mod. Phys. 43 (1993) 599–610.
[40] V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Oliver, R. Silbey, J.L. Brédas, Chem.
Rev. 107 (2007) 926–952.
[41] J.N. Dmas, G.A. Crobys, J. Phys. Chem. 75 (1971) 991–1024.