Crystal Growth & Design
Article
(H2NAP)2·HMTA. Isolated yield: 78%. 1H NMR (600 MHz,
DMSO-d6): 11.50 (s, 1H), 11.10 (s, 1H), 9.03 (s, 1H), 8.47 (d, J =
8.4 Hz, 1H), 8.00 (s, 1H), 7.85 (t, J = 8 Hz, 2H), 7.51 (t, J = 7.2 Hz,
1H), 7.37 (t, J = 6.8 Hz, 1H), 7.20 (d, J = 9 Hz, 1H), 4.55 (s, 12H). IR
(KBr, cm−1): 3446 (bs), 2959 (w), 2924 (w), 2875 (w), 1628 (m),
1591 (s), 1525 (w), 1464 (s), 1424 (w), 1370 (m), 1348 (w), 1312
(s), 1276 (s), 1238 (s), 1227 (s), 1180 (m), 1163 (w), 1144 (w), 1083
(w), 1007 (s), 947 (w), 933 (s), 870 (m), 825 (w), 813 (s), 800 (s),
738 (s), 723 (m), 693 (s), 673 (m), 665 (m), 644 (m).
Accession Codes
tallographic data for this paper. These data can be obtained free
Cambridge Crystallographic Data Centre, 12, Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
(H2NAP)·caffeine. Isolated yield: 82%. 1H NMR (600 MHz,
DMSO-d6): 11.50 (s, 1H), 11.10 (s, 1H), 9.03 (s, 1H), 8.47 (d, J = 8.4
Hz, 1H), 8.00 (s, 1H), 7.85 (t, J = 8.4 Hz, 2H), 7.51 (t, J = 7.2 Hz,
1H), 7.37 (t, J = 6.8 Hz, 1H), 7.20 (d, J = 9 Hz, 1H), 3.87 (s, 3H),
3.41 (s, 3H), 3.21 (s, 3H). IR (KBr, cm−1): 3460 (bs), 3003 (w), 2922
(w), 1704 (s), 1658 (s), 1593 (w), 1553 (s), 1496 (s), 1468 (m), 1407
(w), 1362 (w), 1326 (m), 1282 (s), 1240 (s), 1211 (w), 1181 (s),
1140 (w), 1037 (m), 1022 (m), 978 (w), 938 (s), 878 (w), 829 (s),
780 (m), 757 (w), 744 (s), 669 (m), 645 (m), 607 (m).
AUTHOR INFORMATION
■
Corresponding Author
*Fax: +91-361-2690762; phone +91-361-2582311; e-mail:
Notes
The authors declare no competing financial interest.
(H3OHPA)·theophylline·2H2O. Isolated yield: 86%. 1H NMR
(600 MHz, DMSO-d6): 11.29 (s, 1H), 9.56 (s, 1H), 9.25 (s, 1H), 8.30
(s, 1H), 8.02 (s, 1H), 6.91 (d, J = 7.2 Hz, 1H), 6.79 (d, J = 8.4 Hz,
1H), 6.68 (t, J = 7.8 Hz, 1H), 3.44 (s, 3H), 3.23 (s, 3H). IR (KBr,
cm−1): 3479 (s), 3218 (bs), 1706 (s), 1650 (s), 1558 (s), 1505 (s),
1465 (w), 1440 (w), 1421 (w), 1385 (m), 1315 (m), 1259 (s), 1232
(s), 1190 (s), 1099 (w), 1058 (m), 994 (s), 959 (w), 933 (m), 849
(m), 780 (m), 764 (m), 741 (s), 711 (w), 654 (w), 620 (w), 505 (s).
Physical Measurements. Powder X-ray diffraction patterns were
recorded using Bruker powder X-ray diffractometer D2 phaser.
Infrared spectra of the solid samples were recorded on a PerkinElmer
Spectrum-One FT-IR spectrophotometer in the region 4000−400
cm−1 by making KBr pellets. Mass spectra were recorded on a micro
mass Q-TOF (waters) mass spectrometer by using an acetonitrile/
formic acid matrix. Solution state UV−visible spectra were recorded
using PerkinElmer Lamda-750 spectrometer. Solid state UV−visible
spectra were recorded by the same equipment using the diffuse
reflectance technique by taking the respective powdered sample in a
solid sample holder. Fluorescence emissions were measured in a
PerkinElmer LS-55 spectrofluorimeter by taking a definite amount of
solutions of samples and exciting them at required wavelengths. Solid
state fluorescence spectra were recorded using a PerkinElmer LS-55
spectrofluorimeter by taking constant amounts of finely powdered
samples. Solid fluorescence quantum yields (ΦF) were measured using
a Quanta-φ accessory. X-ray single crystal diffraction data for the
cocrystals and 2,3-dihydroxypenylaldoxime (H3OHPA) were collected
at 298 K with Mo Kα radiation (λ = 0.71073 Å) with the use of a
Bruker Nonius SMART APEX CCD diffractometer equipped with a
graphite monochromator and an Apex CCD camera, whereas for the
2-hydroxynapthaldoxime (H2NAP) data were collected on a Oxford
SuperNova diffractometer where the data refinement and cell
reductions were carried out by CrysAlisPro. Data reduction and cell
refinement were performed using SAINT and XPREP software.
Multiscan empirical absorption corrections were carried out with the
help of face-indexing. Structures were solved by direct methods using
SHELXS-97 and were refined by full-matrix least-squares on F2 using
SHELXL-97. All the non-hydrogen atoms were refined in anisotropic
approximation against F2 of all the reflections. The hydrogen atoms
were placed at their calculated positions and refined in the isotropic
approximation. In the case of H3OHPA-theophylline·2H2O the
hydrogen atoms on the water molecules were fixed. Crystallographic
data collection was done at room temperature, and data are tabulated
in Table 3.
ACKNOWLEDGMENTS
■
The authors thank Ministry of Human Resource and
Development for providing financial facilities to the Depart-
ment of Chemistry Indian Institute of Technology, Guwahati.
REFERENCES
■
(1) Wuest, J. D. Nat. Chem. 2012, 4, 74−75.
(2) Yan, D.; Delori, A.; Lloyd, G. O.; Friscic, T.; Day, G. M.; Jones,
W.; Lu, J.; Wei, M.; Evans, D. G.; Duan, X. Angew. Chem., Int. Ed.
2011, 50, 12483−12486.
(3) Mizobe, Y.; Tohnai, N.; Miyata, M.; Hasegawa, Y. Chem.
Commun. 2005, 14, 1839−1841.
(4) Zhang, G. Q.; Lu, J. W.; Sabat, M.; Fraser, C. L. J. Am. Chem. Soc.
2010, 132, 2160−2162.
(5) Zhou, T. L.; Jia, T.; Zhao, S. S.; Guo, J. H.; Zhang, H. Y.; Wang,
Y. Cryst. Growth Des. 2012, 12, 179−184.
(6) Feng, Q.; Wang, M.; Dong, B.; Xu, C.; Zhao, J.; Zhang, H.
CrystEngComm 2013, 15, 3623−3629.
(7) Zhang, Z.; Zhang, Y.; Yao, D.; Bi, H.; Javed, I.; Fan, Y.; Zhang,
H.; Wang, Y. Cryst. Growth Des. 2009, 9, 5069−5076.
(8) Wagner, B. D.; McManus, G. J.; Moulton, B.; Zaworotko, M. J.
Chem. Commun. 2002, 18, 2176−2177.
(9) Lee, E. Y.; Jang, S. Y.; Suh, M. P. J. Am. Chem. Soc. 2005, 127,
6374−6381.
(10) Kupcewicz, B.; Malecka, M. Cryst. Growth Des. 2015, 15, 3893−
3904.
(11) Dale, T. J.; Rebek, J., Jr. J. Am. Chem. Soc. 2006, 128, 4500−
4501.
(12) Dale, T. J.; Rebek, J., Jr. Angew. Chem., Int. Ed. 2009, 48, 7850−
7852.
(13) Kerkines, I. S. K.; Petsalakis, I. D.; Theodorakopoulos, G.;
Rebek, J., Jr. J. Phys. Chem. A 2011, 115, 834−840.
(14) Wallace, K. J.; Fagbemi, R. I.; Folmer-Andersen, F. J.; Morey, J.;
Lynth, V. M.; Anslyn, E. V. Chem. Commun. 2006, 37, 3886−3888.
(15) Wallace, K. J.; Morey, J.; Lynch, V. M.; Anslyn, E. V. New J.
Chem. 2005, 29, 1469−1474.
(16) Hewage, H. S.; Wallace, K. J.; Anslyn, E. V. Chem. Commun.
2007, 38, 3909−3911.
(17) Aakeroy, C. B.; Beatty, A. M.; Leinen, D. S. Cryst. Growth Des.
2001, 1, 47−52.
(18) Aakeroy, C. B.; Epa, K. N.; Forbes, S.; Desper, J. CrystEngComm
2013, 15, 5946−5949.
(19) Sinha, A. S.; Epa, K. N.; Chopade, P. D.; Smith, M. M.; Desper,
J.; Aakeroy, C. B. Cryst. Growth Des. 2013, 13, 2687−2695.
(20) Bruton, E. A.; Brammer, L.; Pigge, F. C.; Aakeroy, C. B.; Leinen,
D. S. New J. Chem. 2003, 27, 1084−1094.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(21) Aakeroy, C. B.; Sinha, A. S.; Epa, K. N.; Spartz, C. L.; Desper, J.
Chem. Commun. 2012, 48, 11289−11291.
1
The HNMR and PXRD of the cocrystals and various
(22) Aakeroy, C. B.; Sinha, A. S. RSC Adv. 2013, 3, 8168−8171.
(23) Tarai, A.; Baruah, J. B. CrystEngComm 2015, 17, 2301−2309.
fluorescence titrations (PDF)
I
Cryst. Growth Des. XXXX, XXX, XXX−XXX