Table 1 Current–voltage characteristics of the photovoltaic devices with
different Cd/Hg ratio. For the CdTe and Cd0.91Hg0.09Te NCs, UV-ozone
radiation is used to reduce the surface traps
1.5% under AM 1.5G illumination. 11.4% near-infrared contri-
bution is observed from the EQE measurement with only simple
devices structure. All the present findings prove that the aqueous
PPV:Cd
x
Hg1ꢀxTe HSC is promising and attractive for organic–
Cd/Hg
ratio
UV-ozone
time (min)
J
sc
(mA cm
a
ꢀ2
)
V
oc (V)
FF (%)
PCE (%)
inorganic optoelectronic devices for the clean, environment-
friendly, renewable energy application.
3
5
1
1
1
1
: 1
: 1
0 : 1
0 : 1
: 0
0
0
0
10
0
10
12.84
9.05
6.81
6.37
3.04
3.62
0.34
0.32
0.12
0.26
0.12
0.34
34.3
35.0
31.4
30.2
28.4
33.2
1.50
1.01
0.26
0.50
0.10
0.41
Acknowledgements
This project was supported by the National Basic Research
Development Program of China (2012CB933802), the NSFC
: 0
a
The corresponding NCs compositions with different Cd/Hg ratios
3 : 1, 5 : 1, 10 : 1, and 1 : 0) are described as Cd0.75Hg0.25
(
50973039, 91123031, 20921003 and 20804008)
(
,
Cd0.83Hg0.17Te, Cd0.91Hg0.09Te and CdTe respectively.
Notes and references
1
J. Peet, A. J. Heeger and G. C. Bazan, Acc. Chem. Res., 2009, 42,
700–1708.
2 R. C. Coffin, J. Peet, J. Rogers and G. C. Bazan, Nat. Chem., 2009, 1,
1
PCE enhancement. The low Voc of the devices is caused by the
decrease of the conduct band level of the NCs during the
annealing process. Fig. 7(b) presents the J–V curves of
657–661.
3
4
H. Chen, J. H. Hou, S. Q. Zhang, Y. Y. Liang, G. W. Yang, Y. Yang,
L. P. Yu, Y. Wu and G. Li, Nat. Photonics, 2009, 3, 649–653.
C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell and
M. D. McGehee, Mater. Today, 2007, 10, 28–33.
the PPV:Cd
x
Hg1ꢀxTe HSC devices with different Cd/Hg ratios.
ꢀ2
ꢀ2
The Jsc is 3.04 mA cm for the CdTe, 6.37 mA cm for the
2
Cd0.91Hg0.09Te (10 : 1), 9.05 mA cm for the Cd0.83Hg0.17Te
ꢀ
5 R. Søndergaard, M. Helgesen, M. Jørgensen and F. C. Krebs, Adv.
Energy Mater., 2011, 1, 68–71.
ꢀ
2
(
5 : 1) and 12.84 mA cm for the Cd0.75Hg0.25Te (3 : 1). This
6
R. Søndergaard, M. H o€ sel, D. Angmo, T. T. Larsen-Olsen and
F. C. Krebs, Mater. Today, 2012, 15, 36–49.
proves that near-infrared absorption plays an important role in
the enhanced photocurrent. The Voc of the CdTe NCs is only
7 N. Espinosa, M. H o€ sel, D. Angmo and F. C. Krebs, Energy Environ.
Sci., 2012, 5, 5117–5132.
0
.12 V due to the surface traps caused by oxidation, and the Voc
8
F. C. Krebs, J. Fyenbo, D. M. Tanenbaum, S. A. Gevorgyan,
R. Andriessen, B. V. Remoortere, Y. Galagan and M. Jørgensen,
Energy Environ. Sci., 2011, 4, 4116–4123.
can be effectively improved to 0.34 V after UV-ozone radiation
for 10 min. However, there is no effect for Cd0.83Hg0.17Te NCs
and Cd0.75Hg0.25Te NCs which may be due to the strong
oxidation resistance resulting from the strong ionic bond of the
HgTe compared to the CdTe. The corresponding external
quantum efficiency (EQE) of HSC with Cd0.75Hg0.25 NCs is
presented in Fig. 7(c), and we can see that the
PPV:Cd0.75Hg0.25Te HSC has a broad response range of the
spectra from 300 to 1000 nm as expected from the absorption
spectra. The maximum value reaches 50% at 370 nm and the
contribution of near-infrared (800–1000 nm) to the photocurrent
reaches 11.4% which is assigned to the absorption of the
Cd0.75Hg0.25Te NCs. The devices performance of NCs with
different Cd/Hg ratios are also summarized in Table 1, from
which we can see that the Jsc of the device is enhanced as the
Cd/Hg ratio increases and the Voc can be improved by reducing
9 H. J. Son, W. Wang, T. Xu, Y. Y. Liang, Y. Wu, G. Li and L. P. Yu,
J. Am. Chem. Soc., 2011, 133, 1885–1894.
1
0 Z. C. He, C. M. Zhong, X. Huang, W. Y. Wong, H. B. Wu,
L. W. Chen, S. J. Su and Y. Cao, Adv. Mater., 2011, 23, 4636–4643.
11 Y. Y. Liang, Z. Xu, J. B. Xia, S. Tsai, Y. Wu, G. Li, C. Ray and
L. P. Yu, Adv. Mater., 2010, 22, E135–E138.
2 L. T. Dou, J. B. You, J. Yang, C. Chen, Y. J. He, S. Murase,
1
T. Moriarty, K. Emery, G. Li and Y. Yang, Nat. Photonics, 2012,
6, 180–185.
13 H. Chen, C. Lai, I. Wu, H. Pan, I. P. Chen, Y. Peng, C. Liu, C. Chen
and P. Chou, Adv. Mater., 2011, 23, 5451–5455.
1
4 S. Dowland, T. Lutz, A. Ward, S. P. King, A. Sudlow, M. S. Hill,
K. C. Molloy and S. A. Haque, Adv. Mater., 2011, 23, 2739–2744.
15 S. Q. Ren, L. Chang, S. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulovic,
ꢀ
M. Bawendi and S. Gradecak, Nano Lett., 2011, 11, 3998–4002.
1
6 D. Celik, M. Krueger, C. Veit, H. F. Schleiermacher,
B. Zimmermann, S. Allard, I. Dumsch, U. Scherf, F. Rauscher and
P. Niyamakom, Sol. Energy Mater. Sol. Cells, 2012, 98, 433–440.
23,38
the surface traps of the NCs with UV-ozone radiation.
17 T. T. Xu and Q. Q. Qiao, Energy Environ. Sci., 2011, 4, 2700–2720.
1
1
2
2
2
8 W. U. Huynh, J. J. Dittmer and A. P. Alivisatos, Science, 2002, 295,
425–2427.
9 G. Grancini, R. S. S. Kumar, A. Abrusci, H. Yip, C. Li, A. Y. Jen,
G. Lanzani and H. J. Snaith, Adv. Funct. Mater., 2012, 22, 2160.
0 L. Rogach, A. Eychm u€ ller, S. G. Hicker and S. V. Kershaw, Small,
2007, 3, 536–557.
1 S. Dayal, M. O. Reese, A. J. Ferguson, D. S. Ginley, G. Rumbles and
N. Kopidakis, Adv. Funct. Mater., 2010, 20, 2629–2635.
2 K. F. Jeltsch, M. Sch €a del, J. Bonekamp, P. Niyamakom, F. Rauscher,
H. W. A. Lademann, I. Dumsch, S. Allard, U. Scherf and
K. Meerholz, Adv. Funct. Mater., 2012, 22, 397–404.
2
Conclusions
In summary, we have reported the fabrication and character-
ization of the aqueous PPV:Cd
Hg1ꢀxTe HSC with broad
x
coverage of the solar spectrum. By employing the method of
controllable heat-introduced aggregation and growth of the
NCs, the blend film morphology can be easily controlled and the
charge carrier mobility can be easily improved by increasing
the annealing time. The largely improved charge carrier mobility
is also derived from the elimination of the surface ligands of the
NCs and the formation of the interpenetrating network struc-
ture. The coverage range of the absorption spectra can be easily
tuned by changing the Cd/Hg ratio and the surface traps of the
aqueous NCs can be reduced to some extent by UV-ozone
radiation. The PCE of such photovoltaic devices exhibit about
2
3 N. Zhao, T. P. Osedach, L. Chang, S. M. Geyer, D. Wanger,
M. T. Binda, A. C. Arango, M. G. Bawendi and V. Bulovic, ACS
Nano, 2010, 4, 3743–3752.
24 J. Tang and E. H. Sargent, Adv. Mater., 2011, 23, 12–29.
25 E. H. Sargent, Adv. Mater., 2005, 17, 515–522.
2
6 W. L. Ma, S. L. Swisher, T. Ewers, J. Engel, V. E. Ferry,
H. A. Atwater and A. P. Alivisatos, ACS Nano, 2011, 5, 8140–8147.
7 T. R. Andersen, T. T. Larsen-Olsen, B. Andreasen, A. P. L. B o€ ttiger,
J. E. Carl ꢀe , M. Helgesen, E. Bundgaard, K. Norrman,
2
This journal is ª The Royal Society of Chemistry 2012
J. Mater. Chem., 2012, 22, 17827–17832 | 17831