Organic Letters
Letter
Rearrangements and ring expansions during the deoxygenation of β,β-
disubstituted o-nitrostyrenes. J. Org. Chem. 1967, 32, 290−294.
(7) (a) Jana, N.; Zhou, F.; Driver, T. G. Promoting Reductive
Tandem Reactions of Nitrostyrenes with Mo(CO)6 and a Palladium
Catalyst To Produce 3H-Indoles. J. Am. Chem. Soc. 2015, 137, 6738−
6741. (b) Zhou, F.; Wang, D. S.; Guan, X.; Driver, T. G. Nitroarenes
as the Nitrogen Source in Intermolecular Palladium-Catalyzed Aryl C-
H Bond Aminocarbonylation Reactions. Angew. Chem., Int. Ed. 2017,
56, 4530−4534.
(8) (a) Tong, S.; Xu, Z.; Mamboury, M.; Wang, Q.; Zhu, J. Aqueous
Titanium Trichloride Promoted Reductive Cyclization of o-Nitro-
styrenes to Indoles: Development and Application to the Synthesis of
Rizatriptan and Aspidospermidine. Angew. Chem., Int. Ed. 2015, 54,
11809−11812. (b) Zhou, F.; Wang, D. S.; Driver, T. G. Palladium-
Catalyzed Formation of N-Heteroarenes from Nitroarenes using
Molybdenum Hexacarbonyl as the Source of Carbon Monoxide. Adv.
Synth. Catal. 2015, 357, 3463−3468. (c) Okuro, K.; Gurnham, J.;
Alper, H. Ionic diamine rhodium complex catalyzed reductive N-
heterocyclization of 2-nitrovinylarenes. J. Org. Chem. 2011, 76, 4715−
4720. (d) Yang, K.; Zhou, F.; Kuang, Z.; Gao, G.; Driver, T. G.; Song,
Q. Diborane-Mediated Deoxygenation of o-Nitrostyrenes To Form
Indoles. Org. Lett. 2016, 18, 4088−4091.
(9) For examples of carbazole synthesis, see: (a) Creencia, E. C.;
Kosaka, M.; Muramatsu, T.; Kobayashi, M.; Iizuka, T.; Horaguchi, T.
Microwave-assisted Cadogan reaction for the synthesis of 2-aryl-2H-
indazoles, 2-aryl-1H-benzimidazoles, 2-carbonylindoles, carbazole,
and phenazine. J. Heterocycl. Chem. 2009, 46, 1309−1317. (b) Free-
man, A. W.; Urvoy, M.; Criswell, M. E. Triphenylphosphine-mediated
reductive cyclization of 2-nitrobiphenyls: a practical and convenient
synthesis of carbazoles. J. Org. Chem. 2005, 70, 5014−5019. (c) Peng,
H.; Chen, X.; Chen, Y.; He, Q.; Xie, Y.; Yang, C. Solvent-free
synthesis of δ-carbolines/carbazoles from 3-nitro-2-phenylpyridines/
2-nitrobiphenyl derivatives using DPPE as a reducing agent.
Tetrahedron 2011, 67, 5725−5731. (d) Smitrovich, J. H.; Davies, I.
W. Catalytic C-H functionalization driven by CO as a stoichiometric
reductant: application to carbazole synthesis. Org. Lett. 2004, 6, 533−
535.
Containing Heterocyclic Compounds Using Visible-light Photoredox
Catalysis. Chem. Rec. 2016, 16, 319−334. (f) Romero, N. A.;
Nicewicz, D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116,
10075−10166.
(14) For selected examples, see: (a) Pramanick, S.; Kim, J.; Kim, J.;
Saravanakumar, G.; Park, D.; Kim, W. J. Synthesis and Character-
ization of Nitric Oxide-Releasing Platinum(IV) Prodrug and
Polymeric Micelle Triggered by Light. Bioconjugate Chem. 2018, 29,
885−897. (b) Wong, P. T.; Tang, S.; Mukherjee, J.; Tang, K.; Gam,
K.; Isham, D.; Murat, C.; Sun, R.; Baker, J. R.; Choi, S. K. Light-
controlled active release of photocaged ciprofloxacin for lip-
opolysaccharide-targeted drug delivery using dendrimer conjugates.
Chem. Commun. 2016, 52, 10357−10360. (c) Wong, P. T.; Choi, S.
K. Mechanisms of drug release in nanotherapeutic delivery systems.
Chem. Rev. 2015, 115, 3388−3432. (d) Wong, P. T.; Tang, S.;
Cannon, J.; Chen, D.; Sun, R.; Lee, J.; Phan, J.; Tao, K.; Sun, K.;
Chen, B.; Baker, J. R., Jr.; Choi, S. K. Photocontrolled Release of
Doxorubicin Conjugated through a Thioacetal Photocage in Folate-
Targeted Nanodelivery Systems. Bioconjugate Chem. 2017, 28, 3016−
3028.
(15) (a) Fielden, R.; Meth-Cohn, O.; Suschitzky, H. Thermal and
photolytic cyclisation, rearrangement, and denitration reactions of o-
nitro-t-anilines. Tetrahedron Lett. 1970, 11, 1229−1234. (b) Preston,
P. N.; Tennant, G. Synthetic methods involving neighboring group
interaction in o-substituted nitrobenzene derivatives. Chem. Rev.
1972, 72, 627−677. (c) Lin, W. C.; Yang, D. Y. Visible light
photoredox catalysis: synthesis of indazolo[2,3-a]quinolines from 2-
(2-nitrophenyl)-1,2,3,4-tetrahydroquinolines. Org. Lett. 2013, 15,
4862−4865.
(16) (a) Russell, G. A.; Yao, C.-F. Deoxygenation of nitro and
nitrosoaromatics by photolysis with t-BuHgl/Kl. Regiochemistry of
tert-Butyl radical addition to nitrosoaromatics. Heteroat. Chem. 1993,
4, 433−444. (b) Gui, J.; Pan, C. M.; Jin, Y.; Qin, T.; Lo, J. C.; Lee, B.
J.; Spergel, S. H.; Mertzman, M. E.; Pitts, W. J.; La Cruz, T. E.;
Schmidt, M. A.; Darvatkar, N.; Natarajan, S. R.; Baran, P. S. Practical
olefin hydroamination with nitroarenes. Science 2015, 348, 886−891.
(c) Cheung, C. W.; Hu, X. Amine synthesis via iron-catalysed
reductive coupling of nitroarenes with alkyl halides. Nat. Commun.
2016, 7, 12494.
(10) For selected reviews, see: (a) Kaushik, N. K.; Kaushik, N.; Attri,
P.; Kumar, N.; Kim, C. H.; Verma, A. K.; Choi, E. H. Biomedical
importance of indoles. Molecules 2013, 18, 6620−6662. (b) Schmidt,
(17) (a) Wettermark, G. Photochromism of o-nitrotoluenes. Nature
1962, 194, 677. (b) Wettermark, G. Light-induced isomerization of o-
nitrotoluene in water solution. J. Phys. Chem. 1962, 66, 2560−2562.
(c) Yip, R. W.; Sharma, D. K.; Giasson, R.; Gravel, D. Photochemistry
of the o-nitrobenzyl system in solution: evidence for singlet-state
intramolecular hydrogen abstraction. J. Phys. Chem. 1985, 89, 5328−
̈
A. W.; Reddy, K. R.; Knolker, H. J. Occurrence, biogenesis, and
synthesis of biologically active carbazole alkaloids. Chem. Rev. 2012,
112, 3193−3328.
(11) (a) Nykaza, T. V.; Harrison, T. S.; Ghosh, A.; Putnik, R. A.;
Radosevich, A. T. A Biphilic Phosphetane Catalyzes N-N Bond-
Forming Cadogan Heterocyclization via PIII/PV=O Redox Cycling. J.
Am. Chem. Soc. 2017, 139, 6839−6842. (b) Nykaza, T. V.; Cooper, J.
C.; Li, G.; Mahieu, N.; Ramirez, A.; Luzung, M. R.; Radosevich, A. T.
Intermolecular Reductive C-N Cross Coupling of Nitroarenes and
Boronic Acids by PIII/PV=O Catalysis. J. Am. Chem. Soc. 2018, 140,
15200−15205. (c) Nykaza, T. V.; Ramirez, A.; Harrison, T. S.;
Luzung, M. R.; Radosevich, A. T. Biphilic Organophosphorus-
Catalyzed Intramolecular Csp2-H Amination: Evidence for a Nitrenoid
in Catalytic Cadogan Cyclizations. J. Am. Chem. Soc. 2018, 140,
3103−3113.
̈
5330. (d) Il’ichev, Y. V.; Schworer, M. A.; Wirz, J. Photochemical
reaction mechanisms of 2-nitrobenzyl compounds: methyl ethers and
caged ATP. J. Am. Chem. Soc. 2004, 126, 4581−4595. (e) Schmierer,
T.; Laimgruber, S.; Haiser, K.; Kiewisch, K.; Neugebauer, J.; Gilch, P.
Femtosecond spectroscopy on the photochemistry of ortho-nitro-
toluene. Phys. Chem. Chem. Phys. 2010, 12, 15653−15664. (f) Gerbig,
D.; Schreiner, P. R. Formation of a Tunneling Product in the
Photorearrangement of o-Nitrobenzaldehyde. Angew. Chem., Int. Ed.
2017, 56, 9445−9448.
(18) For selected examples, see: (a) Huang, Y.; Lei, Y. Y.; Zhao, L.;
Gu, J.; Yao, Q.; Wang, Z.; Li, X. F.; Zhang, X.; He, C. Y. Catalyst-free
and visible light promoted trifluoromethylation and perfluoroalkyla-
tion of uracils and cytosines. Chem. Commun. 2018, 54, 13662−
13665. (b) Khan, I.; Zaib, S.; Batool, S.; Abbas, N.; Ashraf, Z.; Iqbal,
J.; Saeed, A. Quinazolines and quinazolinones as ubiquitous structural
fragments in medicinal chemistry: An update on the development of
synthetic methods and pharmacological diversification. Bioorg. Med.
Chem. 2016, 24, 2361−2381. (c) Khan, I.; Ibrar, A.; Abbas, N.; Saeed,
A. Recent advances in the structural library of functionalized
quinazoline and quinazolinone scaffolds: synthetic approaches and
multifarious applications. Eur. J. Med. Chem. 2014, 76, 193−244.
(d) Kshirsagar, U. A. Recent developments in the chemistry of
quinazolinone alkaloids. Org. Biomol. Chem. 2015, 13, 9336−9352.
(e) Maiden, T. M. M.; Harrity, J. P. A. Recent developments in
(12) Shevlin, M.; Guan, X.; Driver, T. G. Iron-Catalyzed Reductive
Cyclization of o-Nitrostyrenes Using Phenylsilane as the Terminal
Reductant. ACS Catal. 2017, 7, 5518−5522.
(13) For selected reviews, see: (a) Marzo, L.; Pagire, S. K.; Reiser,
̈
O.; Konig, B. Visible-Light Photocatalysis: Does It Make a Difference
in Organic Synthesis? Angew. Chem., Int. Ed. 2018, 57, 10034−10072.
(b) Narayanam, J. M. R.; Stephenson, C. R. J. Visible light photoredox
catalysis: applications in organic synthesis. Chem. Soc. Rev. 2011, 40,
102−113. (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible
light photoredox catalysis with transition metal complexes:
applications in organic synthesis. Chem. Rev. 2013, 113, 5322−
5363. (d) Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox
Catalysis in Organic Chemistry. J. Org. Chem. 2016, 81, 6898−6926.
(e) Zhou, L.; Lokman Hossain, M.; Xiao, T. Synthesis of N-
E
Org. Lett. XXXX, XXX, XXX−XXX