Table 1 Comparison of RSO3H-SBA-15-X activity with related solid
acids in FFA esterification and TAG transesterification.
The application of pore-expanded SBA-15 silicas in hetero-
geneous catalysis, in the present instance as solid acid catalysts, is
reported for the first time. We demonstrate pore expansion
confers 43-fold increase in activity towards both C16 FFA
esterification and C8/C18 TAG transesterification versus
conventional SBA-15, likely reflecting superior mass-transport
of the bulky free fatty acid and triglycerides. We are currently
undertaking molecular dynamic and Monte Carlo simulations
to further optimise these pore-expanded silicas and assess
the potential benefits of macropore integration to generate
hierarchical pore-expanded networks. This work highlights the
significant benefits in catalytic clean technologies achievable
through careful nanoengineering of materials for the transfor-
mation of bulky biomass-derived feedstocks.
a
C8 & C18 TAG
C16 FFA
esterification
transesterification
Convb
/%
Convb
/%
TOFc
TOFc
/hÀ1
/hÀ1
23.4
Catalyst
Ref
RSO3H
SBA-15-6
RSO3H
23.2
2.1
0.1
5.9
0.25
6.7
0.3
0.4
0.4
2.5
3.3
0.04
6.6
0.9
11.7
1.1
0.04
0.04
7.8
This
work
This
32.9
33.5
31.3
55.4
55.2
120.2
2.6
SBA-15-8
RSO3H
SBA-15-14
Amberlystd
work
This
work
RSO3H
MM-SBA-4
Cs2.8H1.2SiW12O40
35.6
100.6
9
76
11
12.5
22
We gratefully acknowledge financial support from the EPSRC
under grants EP/F063423/1 and EP/G007594/2. KW thanks the
Royal Society for the award of an Industry Fellowship, and AFL
thanks the EPSRC for the award of a Leadership Fellowship.
a
b
C18Triolein in italics; After 6 hrs reaction; Calculated per S site
c
(based on bulk S content); Amberlyst acid loading 4.3 mmol gÀ1
d
Notes and references
2 K. Narasimharao, A. F. Lee and K. Wilson, J. Bio. Mater. Bioenergy,
2007, 1, 19.
3 M. Lapuerta, O. Armas and J. Rodrıguez-Fernandez, Prog. Energy
Combust. Sci., 2008, 34, 198.
4 E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce and
J. G. Goodwin Jr, Ind. Eng. Chem. Res., 2005, 44, 5353;
J. A. Melero, J. Iglesias and G. Morales, Green Chem., 2009,
11, 1285; M. Di Serio, R. Tesser, L. Pengmei and E. Santacesaria,
Energy Fuels, 2008, 22, 207; J.-P. Dacquin, A. F. Lee and K. Wilson,
in Thermochemical Conversion of Biomass to Liquid Fuels and
Chemicals, RSC Publishing, 2010, ISBN 978-1-84973-035-8.
5 S. Garg, K. Son, G. M. Kumaran, R. Bal, K. Gora-Mare,
J. K. Gupta, L. D. Sharma and G. M. Dhar, Catal. Today, 2009,
141, 125.
6 I. K. Mbarak, D. R. Radu, V. S. Y Lin and B. H. Shanks, J. Catal.,
2003, 219, 329.
7 E. Li and V. Rudolph, Energy Fuels, 2008, 22, 145.
8 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky,
J. Am. Chem. Soc., 1998, 120, 6024.
9 J. Dhainaut, J-P. Dacquin, A. F. Lee and K. Wilson, Green Chem.,
2010, 12, 296.
10 D. Chen, Z. Li, Y. Wan, X. Tu, Y. Shi, Z. Chen, W. Shen, C. Yu,
B. Tu and D. Zhao, J. Mater. Chem., 2006, 16, 1511.
11 N. Calin, A. Galarneau, T. Cacciaguerra, R. Denoyel and
F. Fajula, C. R. Chim., 2010, 13, 199.
Fig. 3 Reactivity of Amberlyst and sulfonic acid derivatised SBA-15-6;
SBA-15-8 and SBA-15-14 catalysts in palmitic acid esterification and
transesterification of tricaprylin and triolein.
Similar enhancement is seen in tricaprylin and triolein trans-
esterification with increasing pore diameter across the series.
We attribute the improved performance in both reactions to
the greater accessibility of sulfonic acid sites resulting from
larger mesopores. Table 1 compares conversions and TOFs
of our pore-expanded SBA-15 sulfonic acids in esterification
and transesterification, revealing they even outperform
our previously reported hierarchical sulfonic acid silicas
(RSO3H-MM-SBA-4) and Cs2.8H1.2SiW12O40, suggesting that
mesopore diffusion may have been only partially alleviated by
macropore conduits in the former. Acid strength is another
key parameter influencing activity in both esterification and
transesterification.18 It is therefore interesting to note the
similarities in TOFs with those for Cs2.8H1.2SiW12O40,22 which
likely possesses similar acid strength (ÀDH(NH3)ads of
120–130 kJ molÀ1 vs. 133 kJ molÀ1 for grafted propylsulfonic
acid SBA19).
12 L. Cao, T. Man and M. Kruk, Chem. Mater., 2009, 21, 1144.
13 D. D. Das, P. J. E. Harlick and A. Sayari, Catal. Commun., 2007,
8, 829.
14 A. Martın, G. Morales, F. Martınez, R. van Grieken, L. Cao and
M. Kruk, J. Mater. Chem., 2010, 20, 8026.
15 J. A. Melero, L. F. Bautista, G. Morales, J. Iglesias and
R. Sanchez-Vazquez, Chem. Eng. J., 2010, 161, 323.
´ ´
16 R. Liu, X. Wang, X. Zhao and P. Feng, Carbon, 2008, 46, 1664.
17 M. A. Jackson, I. K. Mbaraka and B. H. Shanks, Appl. Catal., A,
2006, 310, 48.
18 J.-P. Dacquin, H. E. Cross, D. R. Brown, T. Duren, J. J. Williams,
¨
A. F. Lee and K. Wilson, Green Chem., 2010, 12, 1383.
19 P. F. Siril, N. R. Shiju, D. R. Brown and K. Wilson, Appl. Catal.,
A, 2009, 364, 95.
20 A. F. Lee and K. Wilson, Sol–gel sulfonic acid silicas as catalysts, in
Handbook of Green Chemistry-Green Catalysis, ed. P. T. Anastas &
R. H. Crabtree, Wiley-VCH, 2009, ch. 2, vol. 2.
21 X. Mo, D. E. Lopez, K. Suwannakarn, Y. Liu, E. Lotero,
J. G. Goodwin Jr and C. Lu, J. Catal., 2008, 254, 332.
22 L. Pesaresi, D. R. Brown, A. F. Lee, J. M. Montero, H. Williams
and K. Wilson, Appl. Catal., A, 2009, 360, 50.
c
214 Chem. Commun., 2012, 48, 212–214
This journal is The Royal Society of Chemistry 2012