ACS Catalysis
Letter
9183. (e) Corma, A.; Gonzalez-Arellano, C.; Iglesias, M.; Navarro, M.
hydroamination of alkynes at room temperature. The catalysts
displayed a number of unusual features/trends from conven-
tional AuNP catalysts, such as high activity, strong reliance on
the bromide surface ligands, and unconventional interactions
with locally introduced metal oxides (or their hydrates).26
Given the large tunability of metal-encapsulated ICRMs,8−10
these metal cluster−ICRM composites may open new
possibilities in catalyst design and applications.
T.; Sanchez, F. Chem. Commun. 2008, 6218−6220.
́ ́
(6) Corma, A.; Concepcion, P.; Domínguez, I.; Forne, V.; Sabater, M.
J. J. Catal. 2007, 251, 39−47.
(7) Zhao, J.; Zheng, Z.; Bottle, S.; Chou, A.; Sarina, S.; Zhu, H. Chem.
Commun. 2013, 49, 2676−2678.
(8) Zhang, S.; Zhao, Y. ACS Nano 2011, 5, 2637−2646.
(9) Lee, L.-C.; Zhao, Y. Org. Lett. 2012, 14, 784−787.
(10) (a) Zhang, S.; Zhao, Y. Langmuir 2012, 28, 3606−3613.
(b) Lee, L.-C.; Zhao, Y. Helv. Chim. Acta 2012, 95, 863−871.
(11) Because the reduction of the aurate was induced by the bromide
counteranion in the ICRM core, an increase in W0 increased the
number of surfactants and, thus, the bromide counterion available for
the reduction.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures, UV and fluorescence spectra for
Aun@ICRMs, and additional characterization data for the
materials. This material is available free of charge via the
(12) Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys.
Chem. 2007, 58, 409−431.
(13) Zheng, J.; Zhang, C.; Dickson, R. M. Phys. Rev. Lett. 2004, 93,
077402.
AUTHOR INFORMATION
Corresponding Author
*Phone: 515-294-5845. Fax: 515-294-0105. E-mail: zhaoy@
(14) Eustis, S.; Hsu, H.-Y.; El-Sayed, M. A. J. Phys. Chem. B 2005,
■
109, 4811−4815.
(15) Newman, J. D. S.; Blanchard, G. J. Langmuir 2006, 22, 5882−
5887.
(16) The reduction was also evident from the formation of gold black
in the reaction catalyzed by HAuCl4 alone (Table 1, entry 9).
(17) (a) Hostetler, M. J.; Wingate, J. E.; Zhong, C. J.; Harris, J. E.;
Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.;
Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W.
Langmuir 1998, 14, 17−30. (b) Alvarez, M. M.; Khoury, J. T.; Schaaff,
T. G.; Shafigullin, M. N.; Vezmar, I.; Whetten, R. L. J. Phys. Chem. B
1997, 101, 3706−3712. (c) Schaaff, T. G.; Shafigullin, M. N.; Khoury,
J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Gutierrez-
Wing, C.; Ascensio, J.; Jose-Yacaman, M. J. J. Phys. Chem. B 1997, 101,
7885−7891.
(18) (a) Oxford, S. M.; Henao, J. D.; Yang, J. H.; Kung, M. C.; Kung,
H. H. Appl. Catal., A 2008, 339, 180−186. (b) Chandler, B. D.;
Kendell, S.; Doan, H.; Korkosz, R.; Grabow, L. C.; Pursell, C. J. ACS
Catal. 2012, 2, 684−694.
(19) Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda,
T. J. Am. Chem. Soc. 2004, 126, 6518−6519.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the U.S. Department of Energy, Office of Basic
Energy Sciences (Grant DE-SC0002142) for supporting the
research. We thank Dr. Takeshi Kobayashi and Dr. Marek
Pruski at the Ames Laboratory for acquiring the solid-state 29Si
NMR spectra of Aun−SiO2@ICRM(2).
REFERENCES
■
(1) (a) Haruta, M. Chem. Rec. 2003, 3, 75−87. (b) Hashmi, A. S. K.;
Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896−7936.
(c) Corma, A.; Garcia, H. Chem. Soc. Rev. 2008, 37, 2096−2126.
(d) Della Pina, C.; Falletta, E.; Prati, L.; Rossi, M. Chem. Soc. Rev.
2008, 37, 2077−2095. (e) Sakurai, H.; Kamiya, I.; Kitahara, H. Pure
Appl. Chem. 2010, 82, 2005−2016. (f) Della Pina, C.; Falletta, E.;
Rossi, M. Chem. Soc. Rev. 2012, 41, 350−369. (g) Zhang, Y.; Cui, X. J.;
Shi, F.; Deng, Y. Q. Chem. Rev. 2012, 112, 2467−2505.
(20) Habib, M. A. In Comprehensive Treatise of Electrochemistry;
Bockris, J. O. M., Conway, B. E., Yeager, E., Eds.; Plenum Press: New
York, 1980; Vol. 1, pp 135−220.
(21) (a) Nikoobakht, B.; El-Sayed, M. A. Langmuir 2001, 17, 6368−
6374. (b) Gao, J.; Bender, C. M.; Murphy, C. J. Langmuir 2003, 19,
9065−9070. (c) Sau, T. K.; Murphy, C. J. Langmuir 2005, 21, 2923−
2929. (d) Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao,
J.; Gou, L.; Hunyadi, S. E.; Li, T. J. Phys. Chem. B 2005, 109, 13857−
(2) (a) Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W. D.; Hakkinen,
̈
H.; Barnett, R. N.; Landman, U. J. Phys. Chem. A 1999, 103, 9573−
9578. (b) Lopez, N.; Janssens, T. V. W.; Clausen, B. S.; Xu, Y.;
Mavrikakis, M.; Bligaard, T.; Nørskov, J. K. J. Catal. 2004, 223, 232−
235. (c) Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. J. Am.
Chem. Soc. 2005, 127, 9374−9375. (d) Herzing, A. A.; Kiely, C. J.;
Carley, A. F.; Landon, P.; Hutchings, G. J. Science 2008, 321, 1331−
1335. (e) Liu, Y. M.; Tsunoyama, H.; Akita, T.; Xie, S. H.; Tsukuda, T.
ACS Catal. 2011, 1, 2−6.
́ ́
13870. (e) Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.;
Mulvaney, P. Coord. Chem. Rev. 2005, 249, 1870−1901. (f) Kawasaki,
H.; Nishimura, K.; Arakawa, R. J. Phys. Chem. C 2007, 111, 2683−
2690. (g) Garg, N.; Scholl, C.; Mohanty, A.; Jin, R. C. Langmuir 2010,
26, 10271−10276.
(22) (a) Nanoparticles and Catalysis; Astruc, D., Ed.; Wiley-VCH:
Weinheim, Germany, 2008. (b) Bell, A. T. Science 2003, 299, 1688−
1691. (c) Somorjai, G. A.; Contreras, A. M.; Montano, M.; Rioux, R.
M. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10577−10583. (d) Burda,
C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chem. Rev. 2005, 105,
1025−1102. (e) Somorjai, G. A.; Li, Y. M. Top. Catal. 2010, 53, 832−
847.
(23) Pileni, M. P. Structure and Reactivity in Reverse Micelles; Elsevier:
Amsterdam, 1989.
(24) The reaction for the Si(OMe)4 was facilitated by using 6 M HCl
aqueous solution instead of water in the ICRM core.
(25) (a) Haruta, M. Catal. Today 1997, 36, 153−166. (b) Chen, M.
S.; Goodman, D. W. Chem. Soc. Rev. 2008, 37, 1860−1870.
(26) The sol−gel synthesis probably introduced metal oxide hydrates
instead of metal oxides because the synthesis was performed at room
temperature. Nonetheless, the highly tunable activity by the locally
introduced metal oxide (hydrates) was noteworthy.
(3) (a) Oliver-Meseguer, J.; Cabrero-Antonino, J. R.; Domínguez, I.;
Leyva-Per
Molina, L. M.; Lop
S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Vajda, S. Angew. Chem., Int.
Ed. 2009, 48, 1467−1471.
(4) (a) Widenhoefer, R. A.; Han, X. Q. Eur. J. Org. Chem. 2006,
́
ez, A.; Corma, A. Science 2012, 338, 1452−1455. (b) Lee, S.;
́
ez, M. J.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert,
4555−4563. (b) Muller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.;
̈
Tada, M. Chem. Rev. 2008, 108, 3795−3892. (c) Beller, M.; Seayad, J.;
Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368−3398.
(d) Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407−1420.
(e) Mielby, J.; Kegnæs, S.; Fristrup, P. ChemCatChem 2012, 4, 1037−
1047.
(5) (a) Mizushima, E.; Hayashi, T.; Tanaka, M. Org. Lett. 2003, 5,
3349−3352. (b) Zhang, Y.; Donahue, J. P.; Li, C.-J. Org. Lett. 2007, 9,
627−630. (c) Duan, H.; Sengupta, S.; Petersen, J. L.; Akhmedov, N.
G.; Shi, X. J. Am. Chem. Soc. 2009, 131, 12100−12102. (d) Han, Z.-Y.;
Xiao, H.; Chen, X.-H.; Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 9182−
691
dx.doi.org/10.1021/cs401213c | ACS Catal. 2014, 4, 688−691