ChemSusChem
10.1002/cssc.201700026
FULL PAPER
Oleic acid, at the first place, was used as model substrate for evaluating
the catalytic effectiveness of AAPS and optimizing the conditions. A certain
amount of oleic acid, alcohol, and catalyst (AAPS) according to
experimental design were added in a double-neck flask charged with a
reflux condenser. The temperature of the condenser was controlled at
around 22 °C in order to prevent moisture in the air from being condensed
and alcohol in the reaction system from being evaporated. The well-
equipped flask was placed in an oil bath with controlled temperature and
magnetic stirring. The stirring speed was 1000 rpm in order to eliminate
potential mass and heat transfer problems. Samples were taken regularly
from one neck of the flask equipped with a syringe. An appropriate amount
[
9]
M. G. Kulkarni, A. K. Dalai, Ind. Eng. Chem. Res. 2006, 45, 2901–
2913.
[
[
10]
11]
M. Balat, Energy Convers. Manag. 2011, 52, 1479–1492.
S. H. Shuit, S. H. Tan, BioEnergy Res. 2014, 605–617.
A. Alegría, J. Cuellar, Appl. Catal. B Environ. 2015, 179, 530–541.
D. Fang, J. Yang, C. Jiao, ACS Catal. 2011, 1, 42–47.
B. V. S. K. Rao, K. Chandra Mouli, N. Rambabu, a. K. Dalai, R. B.
N. Prasad, Catal. Commun. 2011, 14, 20–26.
[12]
[
[
13]
14]
[
15]
G. Chen, B. Fang, Bioresour. Technol. 2011, 102, 2635–2640.
M.-H. Zong, Z.-Q. Duan, W.-Y. Lou, T. J. Smith, H. Wu, Green
Chem. 2007, 9, 434.
of CHCl
3
:MeOH (1:1) was mixed with the sample and then centrifuged at
[16]
13000 rpm for 3 min. The supernatant containing biodiesel, FFA, and
alcohol was analyzed by following the method described in following.
[
[
[
17]
18]
19]
B. Aghabarari, N. Dorostkar, M. Ghiaci, S. G. Amini, E. Rahimi, M.
V. Martinez-Huerta, J. Taiwan Inst. Chem. Eng. 2014, 45, 431–435.
Z. Guo, in Ion. Liq. Lipid Process. Anal., Elsevier, 2016, pp. 153–
Analysis of biodiesel and free fatty acid
203.
An Iatroscan Mark VI Thin-layer chromatography-flame ionization detector
J. Li, in Ion. Liq. Lipid Process. Anal., Elsevier, 2016, pp. 423–458.
H. Zhao, G. a. Baker, J. Chem. Technol. Biotechnol. 2013, 88, 3–
(TLC-FID, Iatroscan MK-6s, Japan) was used to monitor the formation of
biodiesel from free fatty acid. The sample was spotted on silica coated
chromarods (Chromarod-S ІІІ, Japan) and developed by the solvent
mixture hexane:diethyl ether:formic acid (64:16:0.4, v/v/v) for 20 min. The
developed chromarods were dried at 120 °C for 5 min prior to analysis.
The results were calculated based on the peak areas of biodiesel and FFA
by the following equation.
[20]
1
2.
M. Fan, J. Huang, J. Yang, P. Zhang, Appl. Energy 2013, 108, 333–
39.
[
21]
3
[
[
22]
23]
J. Li, Z. Guo, ACS Sustain. Chem. Eng. 2017, 5, 1237–1247.
L. He, S. Qin, T. Chang, Y. Sun, X. Gao, Catal. Sci. Technol. 2013,
3, 1102–1107.
푃ꢊꢇꢋ ꢇ푟ꢊꢇ푏ꢌꢍꢎꢌꢏꢐꢏꢑ
ꢈ푖표ꢉ푖푒푠푒푙 푦푖푒푙ꢉ (%) =
× ꢃꢗꢗ% (9)
푃ꢊꢇꢋ ꢇ푟ꢊꢇ푏ꢌꢍꢎꢌꢏꢐꢏꢑꢒ푃ꢊꢇꢋ ꢇ푟ꢊꢇ푓ꢓꢏꢏ 푓ꢔꢕꢕꢖ ꢔ푐ꢌꢎ
[
[
24]
25]
A. H. Mohammad Fauzi, N. A. Saidina Amin, Energy Convers.
Manag. 2013, 76, 818–827.
Because the TLC-FID method is based on the separation of compounds
and then detection by FID, we cannot make sure that the synthesized
compound was biodiesel. Hence, the resultant upper phase was collected
and distilled to remove the alcohol, followed by recording its H NMR and
13C NMR spectra in order to confirm the formation of biodiesel.
L. Zhang, M. Xian, Y. He, L. Li, J. Yang, S. Yu, X. Xu, Bioresour.
Technol. 2009, 100, 4368–4373.
1
[26]
M. Olkiewicz, N. V. Plechkova, M. J. Earle, A. Fabregat, F. Stüber,
A. Fortuny, J. Font, C. Bengoa, Appl. Catal. B Environ. 2016, 181,
738–746.
[
[
27]
28]
G. Tao, L. He, N. Sun, Y. Kou, Chem. Commun. 2005, 3562–3564.
X.-D. Hou, Q.-P. Liu, T. J. Smith, N. Li, M.-H. Zong, PLoS One
Acknowledgements
2
013, 8, e59145.
Financial support from the Graduate School of Science and
Technology (GSST), Aarhus University and DLG (Dansk
Landbrugs Grovvareselskab) Food Oil, Denmark is gratefully
acknowledged. Technical support from Anette Andersen is
acknowledged.
[
29]
L. Zhang, L. He, C.-B. Hong, S. Qin, G.-H. Tao, Green Chem. 2015,
17, 5154–5163.
[30]
S. Kirchhecker, D. Esposito, Curr. Opin. Green Sustain. Chem.
2016, 2, 28–33.
[
31]
Y. Zhao, J. Long, F. Deng, X. Liu, Z. Li, C. Xia, J. Peng, Catal.
Commun. 2009, 10, 732–736.
Keywords: Amino acids • biodiesel • free fatty acid • protic salts
•
esterification
[32]
[33]
[34]
[35]
[36]
G. Vlahov, A. A. Giuliani, P. Del Re, Anal. Methods 2010, 2, 916–
923.
[
[
[
1]
I. . Dresselhaus, M.S.; Thomas, Nature 2001, 414, 332–337.
J. K. Satyarthi, D. Srinivas, P. Ratnasamy, Energy and Fuels 2009,
23, 2273–2277.
2]
3]
M. Stöcker, Angew. Chemie Int. Ed. 2008, 47, 9200–9211.
J. Li, P. Zhou, H. Liu, K. Wu, X. Kang, Y. Gong, W. Xiao, J. Lin, Z.
Liu, Ind. Crops Prod. 2014, 62, 446–452.
G. Gelbard, O. Brès, R. M. Vargas, F. Vielfaure, U. F. Schuchardt,
J. Am. Oil Chem. Soc. 1995, 72, 1239–1241.
M. G. Kulkarni, R. Gopinath, L. C. Meher, A. K. Dalai, Green Chem.
2006, 8, 1056.
[
[
[
[
[
4]
5]
6]
7]
8]
A. H. Mohammad Fauzi, N. A. S. Amin, R. Mat, Appl. Energy 2014,
114, 809–818.
Z. Helwani, M. R. Othman, N. Aziz, W. J. N. Fernando, J. Kim, Fuel
Process. Technol. 2009, 90, 1502–1514.
J. C. Juan, J. Zhang, M. A. Yarmo, Appl. Catal. A Gen. 2008, 347,
133–141.
J. L. Shumaker, C. Crofcheck, S. A. Tackett, E. Santillan-Jimenez,
M. Crocker, Catal. Letters 2007, 115, 56–61.
[37]
[38]
D. L. Jones, Soil Biol. Biochem. 1999, 31, 613–622.
S. Chongkhong, C. Tongurai, P. Chetpattananondh, C. Bunyakan,
Biomass and Bioenergy 2007, 31, 563–568.
E. Lotero, Y. Liu, D. E. Lopez, K. Suwannakarn, D. A. Bruce, J. G.
Goodwin, Ind. Eng. Chem. Res. 2005, 44, 5353–5363.
H. Michel, Angew. Chemie Int. Ed. 2012, 51, 2516–2518.
[39]
[40]
M. Berrios, J. Siles, M. Martín, A. Martín, Fuel 2007, 86, 2383–2388.
M. I. Zubir, S. Y. Chin, J. Appl. Sci. 2010, 10, 2584–2589.
This article is protected by copyright. All rights reserved.