Organic Letters
Letter
Chem. Commun. 2016, 52, 9044−9047. (e) Bhojgude, S. S.; Roy, T.;
Gonnade, R. G.; Biju, A. T. Org. Lett. 2016, 18, 5424−5427. (f) Roy, T.;
Bhojgude, S. S.; Kaicharla, T.; Thangaraj, M.; Garai, B.; Biju, A. T. Org.
Chem. Front. 2016, 3, 71−76.
(
(
3) Ross, S. P.; Baire, B.; Hoye, T. R. Org. Lett. 2017, 19, 5705−5708.
4) (a) Bradley, A. Z.; Johnson, R. P. J. Am. Chem. Soc. 1997, 119,
9
917−9918. (b) Miyawaki, K.; Suzuki, R.; Kawano, T.; Ueda, I.
Tetrahedron Lett. 1997, 38, 3943−3946. (c) Tsui, J. A.; Sterenberg, B. T.
Organometallics 2009, 28, 4906−4908. (d) Yun, S. Y.; Wang, K.-P.; Lee,
N.-K.; Mamidipalli, P.; Lee, D. J. Am. Chem. Soc. 2013, 135, 4668−4671.
(
5) (a) Hoye, T. R.; Baire, B.; Niu, D.; Willoughby, P. H.; Woods, B. P.
Nature 2012, 490, 208−212. (b) Baire, B.; Niu, D.; Willoughby, P. H.;
Woods, B. P.; Hoye, T. R. Nat. Protoc. 2013, 8, 501−508. (c) Diamond,
O. J.; Marder, T. B. Org. Chem. Front. 2017, 4, 891−910.
(
6) Chen, J.; Palani, V.; Hoye, T. R. J. Am. Chem. Soc. 2016, 138, 4318−
4
321.
(
(
7) Ross, S. P.; Hoye, T. R. Nat. Chem. 2017, 9, 523−530.
8) (a) Hong, B.-C.; Shr, Y.-J.; Wu, J.-L.; Gupta, A. K.; Lin, K.-J. Org.
Lett. 2002, 4, 2249−2252. (b) Mizoguchi, H.; Watanabe, R.; Minami, S.;
Oikawa, H.; Oguri, H. Org. Biomol. Chem. 2015, 13, 5955−5963.
Figure 5. Examples demonstrating diversification of some of the TCR
products to produce multi-heterocyclic adducts.
(
9) Karmakar, R.; Yun, S. Y.; Wang, K.-P.; Lee, D. Org. Lett. 2014, 16,
6
(
−9.
10) (a) Garr, A. N.; Luo, D.; Brown, N.; Cramer, C. J.; Buszek, K. R.;
VanderVelde, D. Org. Lett. 2010, 12, 96−99. (b) Cheong, P. H. Y.;
Paton, R. S.; Bronner, S. M.; Im, G.-Y. J.; Garg, N. K.; Houk, K. N. J. Am.
Chem. Soc. 2010, 132, 1267−1269.
triflate intermediates increases the scope of compatible
nucleophiles (Figure 4). Facile post-TCR modification allows
the introduction of additional heterocycles (Figure 5). This new
TCR strategy is quite general and has considerable potential for
the rapid construction of multiheterocyclic compounds.
(
11) Wang, H.-J.; Earley, W. G.; Lewis, R. M.; Srivastava, R. R.; Zych, A.
J.; Jenkins, D. M.; Fairfax, D. J. Tetrahedron Lett. 2007, 48, 3043−3046.
(12) Axelsson, O.; Peters, D. J. Heterocycl. Chem. 1997, 34, 461−463.
(13) Welsch, M. E.; Snyder, S. A.; Stockwell, B. R. Curr. Opin. Chem.
ASSOCIATED CONTENT
Supporting Information
Biol. 2010, 14, 347−361.
■
(
14) We carried out the following NMR experiment to verify that the
*
S
newly incorporated, aromatic hydrogen atom in the benzenoid product
originated from the protic nucleophile. Substrate 6a, amine 8a, and
CH COOD or CD COOD were heated in benzene-d . In each case,
3
3
6
product P1 was primarily (the solution at time zero showed evidence of
Experimental procedures, characterization data, and
copies of all H and C NMR spectra for all isolated
1
13
a small amount of protium from H O in the reactants and < 100%
2
labeling of the acetic acid) deuterated by integration of the (residual)
aromatic proton resonance and reinforced by ESI-MS analysis.
(
15) In all cases the triflate salts were freed of solvent (CH CN) prior
3
AUTHOR INFORMATION
to being used for the subsequent nucleophilic ring opening. To
demonstrate additional parameters, we precipitated with ether and
isolated by filtration the ammonium triflate that leads to P40. This solid
material was spectroscopically characterized, although as an admixture
with remaining DABCOH ·TfO . This material was stored for over 2
years with no appreciable change in integrity.
■
*
ORCID
+
−
Notes
(16) (a) Cant, A. A.; Bertrand, G. H. V.; Henderson, J. L.; Roberts, L.;
Greaney, M. F. Angew. Chem., Int. Ed. 2009, 48, 5199−5202.
(b) Bhojgude, S. S.; Kaicharla, T.; Biju, A. T. Org. Lett. 2013, 15,
The authors declare no competing financial interest.
5
452−5455. (c) Hirsch, M.; Dhara, S.; Diesendruck, C. E. Org. Lett.
ACKNOWLEDGMENTS
This work was supported by the U.S. Department of Health and
Human Services, National Institute of General Medical Sciences
2016, 18, 980−983.
■
(
GM-65597). NMR spectral data were obtained with an
instrument procured with a grant from the National Institutes
of Health Shared Instrumentation Grant program
(
S10OD011952). We thank Mr. Juntian Zhang for performing
the representative example of a 1 mmol scale reaction (see the
REFERENCES
1) Multicomponent Reactions; Zhu, J., Bienayme,
Weinheim, 2005.
■
(
́
H., Eds.; Wiley-VCH:
(
2) (a) Stephens, D.; Zhang, Y.; Cormier, M.; Chavez, G.; Arman, H.;
Larionov, O. V. Chem. Commun. 2013, 49, 6558−6560. (b) Bhojgude, S.
S.; Baviskar, D. R.; Gonnade, R. G.; Biju, A. T. Org. Lett. 2015, 17, 6270−
6
1
273. (c) Roy, T.; Baviskar, D. R.; Biju, A. T. J. Org. Chem. 2015, 80,
1131−11137. (d) Roy, T.; Thangaraj, M.; Gonnade, R. G.; Biju, A. T.
D
Org. Lett. XXXX, XXX, XXX−XXX