O
O
O
O
F
CO2H
F
CO2H
F
CO2H
H2O
F
CO2H
δ–
–F –
δ+
N
+
N
N
N
N
N
N
N
••
+
N
F
Et
N
Et
N
Et
N
OH Et
H
H
H
H
Me
Me
F
Me
Me
1*
7
Cl –
O
N
O
O
F
CO2H
CO2H
F
CO2H
6
+
N
+
N
+
N
+
N
N
N
H
N
Et
N
Et
H
H
H
Me
Me
Me
8
9
–
H +
–
H +
O
O
F
CO2H
F
CO2H
4
+
N
N
N
N
N
Et
N
Et
H
H
Me
Me
H2O
2
+ 3
Scheme 2
tionally suitable d position. Products 2 and 3 also arise from the
carbene via intramolecular hydrogen transfer to give the
rearranged cations 8 and 9. These deprotonate to enediamines,
which in turn are hydrolysed, whether in solution or during
work up, to the observed diamines. Compound 5 also results
from demolition of the piperazinyl chain coupled with de-
fluorination.
References
1
H. C. Neu, in The 4-Quinolones, ed. G. C. Crumplin, Springer Verlag,
London, 1990, p. 1.
2
W. Christ, T. Lehnert and B. Ulbrich, Rev. Infect. Dis., 1988, 1, 5141.
3 N. Wagai, F. Yamagughi, M. Sekiguchi and K. Tawara, Toxicol. Lett.,
1990, 54, 299.
4 K. S. Loveday, Photochem. Photobiol., 1996, 63, 369.
5
P. D. Forbes, C. P. Sambuco, R. M. Parker and A. H. Hoberman, 23rd
Annual Meeting of the American Society of Photobiology, 1995, June
There are only a few precedents for photoinduced defluori-
nation in aromatic or heterocyclic chemistry, viz those of
1
7–22, Washington, DC.
E. Fernandez and A. M. Cardenas, J. Photochem. Photobiol. B., Biol.,
990, 4, 329.
20
N-formyl-4-fluorotryptophan methyl ester and of some dime-
6
2
1
thoxyfluorobenzenes, both involving related activation by
electron-donating groups. The peculiarly high photoreactivity
of lomefloxacin with respect to other FQs (see above) is
certainly due to the selective defluorination from position 8,
apparently due to activation by both the adjacent amino groups,
which increase the zwitterionic character of the singlet excited
state and facilitate the fragmentation indicated in Scheme 2.
Studies in progress in this laboratory show however that this
type of reactivity is rather general, and defluorination accom-
panied by alkylamino chain degradation also takes place in FQs
containing only the 6-fluoro group, although with a lower
efficiency.‡
1
7
8
N. Wagai and K. Tawara, Arch. Toxicol., 1991, 66, 392.
N. Wagai and K. Tawara, Free Radical Res. Commun., 1992, 17,
387.
9 S. Raoul, J. E. Rosen, G. M. Williams and J. Cadet, Photochem.
Photobiol., 1995, 61, 108.
1
0 P. Dayhaw-Berker and T. G. Truscott, Photochem. Photobiol., 1988, 47,
7
65.
1
1 G. Vermeersch, J. C. Ronfard-Haret, M. Bazin, V. Carillet, P. Morliere
and R. Santus, Photochem. Photobiol., 1991, 54, 661.
2 N. Wagai and K. Tawara, Arch. Toxicol., 1991, 65, 495.
3 P. Bliski, L. J. Martinez, E. B. Koker and C. F. Chignell, Photochem.
Photobiol., 1996, 64, 496.
1
1
The fact that cation 7 exhibits carbene chemistry dominated
by intramolecular C–H insertion and hydrogen transfer strongly
suggests that the cause of the observed carcinogenic/mutagenic
effect of this drug is formation of a covalent bond by direct
reaction of excited 1 with DNA through a related inter-
molecular process.
14 L. Martinez, P. Bliski and C. F. Chignell, Photochem. Photobiol., 1996,
64, 911.
15 J. M. Domagala, J. Antimicrob. Chemother., 1994, 33, 685.
1
1
1
1
6 A. A. Chatelet, S. Albertini and E. Gocko, Mutagenesis, 1996, 11,
97.
7 L. Martinez, R. Sik and C. F. Chignell, Photochem. Photobiol., 1966,
3, 29S.
8 L. J. Martinez, G. Li and C. F. Chignell, Photochem. Photobiol., 1997,
5, 599.
9 Z. Majerski, Z. Hamersak and R. Sarac-Aneri, J. Org. Chem., 1988, 53,
053 and references cited therein.
20 N. C. Yang, A. Huang and D. H. Yang, J. Am. Chem. Soc., 1989, 111,
060.
4
6
Partial support of this work by the Istituto Superiore di
Sanit a` , Rome, is gratefully acknowledged.
6
5
Footnotes
8
*
†
E-mail: albini@chifis.unipv.it
All products have been fully characterised by elemental analysis and
2
2
1 G. Zhang and P. Wan, J. Chem. Soc., Chem. Commun., 1994, 19.
2 G. Condorelli, G. De Guidi, S. Giuffrida, P. Miano, A. Velardita and
S. Sortino, Photochem. Photobiol., 1996, 63, 75S.
spectroscopic means as the corresponding NA-ethylcarbamate methyl
esters.
‡
2
Release of fluoride by irradiation of enoxacin has been detected (ref.
2).
Received in Cambridge, UK, 12th May 1997; Com. 7/03226I
1330
Chem. Commun., 1997
Typeset and printed by Black Bear Press Limited, Cambridge, England