Communication
ChemComm
and basic additives, pyridine produced remarkable positive effects
in the hydrogen transfer of the investigated enone providing high
activity, selectivity to allylic alcohols and diastereoselectivity in the
synthesis of an important prostaglandin product. Also, pivalic acid
swaps the diastereoselectivity totally. Also, GO is able to hydrogenate
a,b-unsaturated ketones such as b-ionone or methoxynaphthyl-2-
butanone to the corresponding allylic or saturated alcohols with
excellent yields. It is noteworthy that the system does not contain
metals and is recyclable.
Conflicts of interest
There are no conflicts to declare.
Notes and references
Scheme 4 Hydrogenation of b-ionone (3, A) and 4-(6-methoxy-2-
naphthyl)-3-butenone (8, B).
1
J. Maes, E. A. Mitchell and B. U. W. Maes, in Green and Sustainable
Medicinal Chemistry, ed. L. Summerton, H. F. Sneddon, L. C. Jones
and J. H. Clark, RSC, Thomas Graham House, Science Park, Cambridge,
24
the organic acid or base. In addition, p–p stacking and other
2016, ch. 16, pp. 192–203.
interactions such as electrostatic and dispersion forces should
not be disregarded.
In order to expand the scope of GO as a catalyst, two more
a,b-unsaturated ketones, namely, b-ionone (3) and 4-(6-methoxy-2-
naphthyl)-3-buten-2-one (8) (Scheme 4A and B), were hydrogenated.
2 S. M. Coman and V. I. Parvulescu, Curr. Pharm. Des., 2015, 21, 5558.
3 Y. Wang, X. C. Wangand and M. Antonietti, Angew. Chem., Int. Ed.,
27–31
2
012, 51, 68.
4
M. Butters, D. Catterick, A. Craig, A. Curzons, D. Dale, A. Gillmore,
S. P. Green, I. Marziano, J.-P. Sherlock and W. White, Chem. Rev.,
2
006, 106, 3002.
D. R. Dreyer, H. P. Jia and C. W. Bielawski, Angew. Chem., Int. Ed.,
010, 49, 6813.
6 A. V. Kumar and K. R. Rao, Tetrahedron Lett., 2011, 52, 5188.
5
4
-(6-Methoxy-2-naphthyl)-2-butanone (10) with the trade name Nabu-
2
32
metone is an anti-inflammatory, analgesic and antipyretic agent.
7
8
9
S. Verma, H. P. Mungse, N. Kumar, S. Choudhary, S. L. Jain, B. Sain
and O. P. Khatri, Chem. Commun., 2011, 47, 12673.
D. R. Dreyer, K. A. Jarvis, P. J. Ferreira and C. W. Bielawski, Polym.
Chem., 2012, 3, 757.
A. Primo, F. Neatu, M. Florea, V. Parvulescu and H. Garcia, Nat.
Commun., 2014, 5, 5291.
In line with the hydrogenation of enone 1, the hydrogenation of
the isolated double bond in b-ionone (3) is only a minor reaction,
and a selectivity of 81% for the allylic alcohol (i.e., b-ionol 6) was
obtained at a high conversion (490%). However, by association
with pyridine, GO also allows the selective hydrogenation of
10 H. Adolfsson, Angew. Chem., Int. Ed., 2005, 44, 3340–3342.
b-ionone 3 to dihydro-b-ionone 4 (89% yield), but with a low rate 11 J. M. Farrell, Z. M. Heiden and D. W. Stephan, Organometallics, 2011,
3
0, 4497–4500.
(
reaction time of 48 h). The role of the Brønsted acid was proved
1
1
2 T. Mahdi and D. W. Stephan, J. Am. Chem. Soc., 2014, 136, 15809–15812.
3 J. L. Margitfalvi, A. Tompos, I. Kolosova and J. Valyon, J. Catal.,
1998, 174, 246.
4 S. M. Coman, V. I. Parvulescu, M. De Bruyn, D. E. De Vos and
P. A. Jacobs, J. Catal., 2002, 206, 218.
from the reactions carried out in the presence of acetic or pivalic
acid. Under these conditions the reaction took place with a high
conversion (495%) to tetrahydroedulane 7. The extra Brønsted
acidity brought by these molecules allowed the hydrogenation of
1
1
5 C. Su and K. P. Loh, Acc. Chem. Res., 2013, 46(10), 2275.
b-ionone (3) to saturated alcohol (5) and the nucleophilic attack of 16 J. L. Figueiredo and M. F. R. Pereira, in Carbon Materials for Catalysis,
ed. P. Serp, J. L. Figueiredo, Wiley & Sons, Inc., 2009, ch. 6, p. 179.
7 H. P. Boehm, Carbon, 2002, 40, 145.
8 G. S. Szymanski and G. Rychlicki, Carbon, 1993, 31, 247.
the OH to the CQC double bond.
1
1
GO also was a convenient catalyst for the hydrogenation of
4
-(6-methoxy-2-naphthyl)-3-buten-2-one (8) to the saturated 19 A. Dhakshinamoorthy, M. Alvaro, P. Concepci ´o n, V. Forn ´e s and
H. Garcia, Chem. Commun., 2012, 48, 5443–5445.
alcohol (11) in the absence of any additive. Different from the
enone 1 (Scheme 1) or b-ionone (3), in the present case, the p–p
2
0 A. Dhakshinamoorthy, M. Alvaro, M. Puche, V. Fornes and
H. Garcia, ChemCatChem, 2012, 4, 2026–2030.
stacking interactions may orientate the chemisorption of 8 21 E. J. Corey, K. B. Becker and R. K. Varma, J. Am. Chem. Soc., 1972, 94, 8616.
2
2 C. Su, M. Acik, K. Takai, J. Lu, S. Hao, Y. Zheng, P. Wu, Q. Bao,
T. Enoki and Y. J. Chabal, Nat. Commun., 2012, 3, 1298.
3 J. Gholami, M. Manteghian, A. Badiei, H. Ueda and M. Javanbakht,
Luminescence, 2016, 31, 229.
parallel to the GO surface favoring the one-pot hydrogenation
of both the CQO and CQC bonds.
In summary, the present study has shown that GO exhibits
catalytic activity for the hydrogen transfer from i-propanol to
enones with high conversions and selectivities to the corres-
2
24 A. A. Ensafi, M. Jafari-Asl and B. Rezaei, Electrochim. Acta, 2016, 194, 95.
25 Y. Guo, Z. Jia and M. Cao, J. Ind. Eng. Chem., 2017, 53, 325–332.
26 C. A. Hunter and J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112(14), 5525.
ponding allylic alcohols with a prostaglandin structure. For low 27 M. J. Rashkin and M. L. Waters, J. Am. Chem. Soc., 2002, 124, 1860.
2
8 M. O. Sinnokrot and C. D. Sherrill, J. Phys. Chem. A, 2003,
07(41), 8377.
conversions, GO behaves as a diastereoselective hydrogen
transfer catalyst with an acceptable d.e. value of 77.8% towards
the epi isomer. The modification of GO by organic molecules
changes the electronic properties of GO tuning the catalytic
activity, affecting the selectivity to allyl alcohol and diastereo-
selectivity to the resulted product. Among the various acidic
1
29 A. L. Ringer, M. O. Sinnokrot, R. P. Lively and C. D. Sherrill,
Chem. – Eur. J., 2006, 12(14), 3821.
3
3
3
0 M. O. Sinnokrot and C. D. Sherrill, J. Phys. Chem. A, 2006, 110(37), 10656.
1 S. E. Wheeler and K. N. Houk, J. Am. Chem. Soc., 2008, 130(33), 10854.
2 J. R. Fitch, M. Aslam, D. E. Rios and J. C. Smith, PCT-WO/96-40608
to Hoechst Celanese, 1996.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2017