1
376
Vol. 49, No. 10
methylimidazole (NMeI) increased the yield of 6 from 11.3 References and Notes
1
)
Cayen M. N., Kraml M., Ferdinandi E. S., Gresejin E., Dvornik D.,
Drug Metab. Rev., 12, 339—362 (1981).
Humber L. G., Med. Res. Rev., 7, 1—28 (1987).
to 43.0% and 5 from 5 to 24.0%. These results were summa-
rized in Table 1. The addition of 1-methylimidazole as co-
catalyst did not induce the larger differences in product
yields, except with 7b.
Although the aromatic ring hydroxylated and 8-ethyl hy-
droxylated metabolites are known but the pyrano ring hy-
droxylated metabolite, 6 is not detected in the metabolism of
etodolac in human or rat. It is believed that 6 is a intermedi-
ate compound in the formation of another metabolite 4-urei-
doetodolac. But with chemical model systems of cytochrome
P450, unlike in vivo metabolism of etodolac, 6 is one of the
major product in moderate yields.
2
3
)
)
Higuchi T., Hirobe M., J. Mol. Catal. A: Chem., 113, 403—422 (1996).
4) Masumoto H., Takeuchi K., Ohta S., Hirobe M., Chem. Pharm. Bull.,
7, 1788—1794 (1989).
5
3
)
Chauhan S. M. S., Chemical Models of Cytochrome P450 and Flavin
Monooxygenase in Drug Metabolism, in 6th National Symposium on
Bioorganic Chemistry, IISc, Bangalore, June 6, 1997.
6
)
Yang S. J., Nam W., Inorg. Chem., 37, 606—607 (1998).
7) Chauhan S. M. S., Ray P. C., Mohibb M., Azam E., Prakash S.,
Sharma T. K., J. Ind. Chem. Soc., 74, 199—201 (1997).
1
8
)
a) Data of 4-oxoetodolac (5): H-NMR (300 MHz, DMSO-d /TMS): d
6
0
.83 (t, Jϭ7.3 Hz, 3H), 1.34 (t, Jϭ7.3 Hz, 3H), 2.01 (m, 1H), 2.17 (m,
1
H), 2.71—3.04 (m, 4H), 3.06 (s, 2H), 4.28 (br s, 2H), 7.01 (d,
The formation of 6 may be explained by abstraction of hy-
drogen radical from the allylic 4-position of etodolac by the
high valent oxo-iron(IV) porphyrins and subsequent recom-
bination of the etodolac radical with the hydroxy radical or
hydroxy-iron(III) porphyrin present in the reaction medium.
Further the formation of 5 can also be explained as over-oxi-
dation of 6. Further the yield of 5 increases with increase of
time, catalyst and oxidant. This type of hydrogen abstraction
and recombination mechanism have been reported earlier
Jϭ9 Hz, 1H), 7.07 (t, Jϭ9 Hz, 1H), 7.36 (d, Jϭ9 Hz, 1H), 8.59 (br s,
Ϫ1
1H), 11.23 (br s, 1H); IR (KBr, cm ): 3520, 3345, 1731, 1632, 1598,
ϩ
1
2
499, 1463, 1307, 1261, 1079, 1018, 805, 675. EI-MS m/z: 301 (M ),
ϩ
ϩ
72 (M ϪC H ), 242 (M ϪCH COOH). b) Data of 4-hydroxy-
etodolac (6): H-NMR (300 MHz, DMSO-d /TMS) d ppm: 0.89 (t,
2
5
2
1
6
Jϭ7.3 Hz, 3H), 1.25 (t, Jϭ7.3 Hz, 3H), 1.90—2.13 (m, 2H), 2.64—
2.91 (m, 2H), 3.27 (m, 2H), 4.09 (d, Jϭ15 Hz, 2H), 4.30 (m, 1H), 4.
69 (s, 1H), 5.09 (d, Jϭ15 Hz, 2H), 5.78 (s, 1H), 6.94 (d, Jϭ9 Hz, 1H),
7
.06 (t, Jϭ9 Hz, 1H), 7.37 (d, Jϭ9 Hz, 1H), 8.57 (br s, 1H), 11.24
Ϫ1
(
br s, 1H); IR (KBr, cm ): 3345, 3285, 1731, 1453, 1375, 1243, 1201,
ϩ
1
118, 1087, 1018, 926, 832, 750, 680; EI-MS m/z: 303 (M ) 285
ϩ
9
—13)
with cytochrome P450 chemical model systems.
Al-
and
(M ϪH O).
2
1
4)
though the decarboxylation of indole acetic acid
9) Mansuy D., Battioni P., Battioni J. P., Eur J. Biochem., 184, 267—285
1989).
0) Chauhan S. M. S., Gupta M., Gulati A., Nizar P. N. H., Ind. J. Chem.,
5B, 1267—1270 (1996).
1
5)
(
ibuprofen with hydrogen peroxide catalyzed by iron(III)
porphyrins in aqueous and organic solvents has been
reported, we have not observed the decarboxylation of
etodolac in the above reaction conditions. Thus the above
1
3
1
1
1) Chauhan S. M. S., J. Sci. Ind. Res., 56, 311—334 (1997).
2) Lindsey J. S., Wagner R. W., J. Org. Chem., 54, 828—836 (1989).
chemical model systems i.e., halogenated and perhalogenated 13) Chauhan S. M. S., Ray PC., Bioorg. Med. Chem. Lett., 1, 601—606
(
1991).
iron(III) porphyrins (7a—e)/PhIO may be used as efficient
catalysts in the regioselective synthesis of two oxidative
metabolites from etodolac in milder conditions.
1
1
4) Chauhan S. M. S., Mohapatra P. P., Kalra B., Kohli T. S., Satapathy S.,
J. Mol. Catal. A: Chem., 113, 239—247 (1996).
5) Chauhan S. M. S., Sahoo B. B., Bioorg. Med. Chem., 7, 2629—2634
(
1999).
Acknowledgement The authors are thankful to Council of Scientific
and Industrial Research (CSIR), New Delhi, India for financial support.