Journal of Medicinal Chemistry
Article
thioredoxin 1 and thioredoxin 2 oxidation as potential anticancer agents.
ACKNOWLEDGMENTS
■
J. Med. Chem. 2012, 55, 5518−5528.
We thank Professor Katja Becker (Interdisciplinary Research
Center, Justus Liebig University, Germany) for generously
providing us the hTrxR construct. We also thank Dr. Liang Chen
(15) Craig, S.; Gao, L.; Lee, I.; Gray, T.; Berdis, A. J. Gold-containing
indoles as anticancer agents that potentiate the cytotoxic effects of
ionizing radiation. J. Med. Chem. 2012, 55, 2437−2451.
(
National Institute of Biology Sciences, Beijing, China) for
(16) Marzano, C.; Gandin, V.; Folda, A.; Scutari, G.; Bindoli, A.;
providing MEF cells. We thank Nippon Chemical Industrial Co.,
Ltd., for providing the compound sample of GC20. Financial
support from the Chinese Ministry of Science and Technology
Rigobello, M. P. Inhibition of thioredoxin reductase by auranofin
induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free
Radical Biol. Med. 2007, 42, 872−881.
“973” Grant 2011CB812402 (to N.H.), the Key New Drug
(17) Bhabak, K. P.; Mugesh, G. A synthetic model for the inhibition of
glutathione peroxidase by antiarthritic gold compounds. Inorg. Chem.
2009, 48, 2449−2455.
Creation and Manufacturing Program 2009ZX09120-055 and
Shanghai Committee of Science and Technology 08410703600
(18) Chiellini, C.; Casini, A.; Cochet, O.; Gabbiani, C.; Ailhaud, G.;
(to Q.H.L.) is gratefully acknowledged.
Dani, C.; Messori, L.; Amri, E. Z. The influence of auranofin, a clinically
established antiarthritic gold drug, on bone metabolism: analysis of its
effects on human multipotent adipose-derived stem cells, taken as a
model. Chem. Biodiversity 2008, 5, 1513−1520.
ABBREVIATIONS USED
■
RA, rheumatoid arthritis; TrxR, thioredoxin reductase; GPx,
glutathione peroxidase; GR, glutathione reductase; NSCLC,
non-small-cell lung cancer; GSH, glutathione; BSA, bovine
serum albumin; RB, retinoblastoma; MEF, mouse embryonic
fibroblasts; ROS, reactive oxygen species; MAPK, mitogen-
activated protein kinase; ASK, apoptosis signal-regulating kinase;
DTNB, 5,5′-dithiobis(2-nitrobenzoic acid); TNB, 5-thionitro-
benzol; RBC, red blood cells; WBC, white blood cells
(
19) Gromer, S.; Arscott, L. D.; Williams, C. H., Jr.; Schirmer, R. H.;
Becker, K. Human placenta thioredoxin reductase. Isolation of the
selenoenzyme, steady state kinetics, and inhibition by therapeutic gold
compounds. J. Biol. Chem. 1998, 273, 20096−20101.
(20) Carlock, M. T.; Shaw, C. F., III; Eidsness, M. K.; Watkins, J. W., II;
Elder, R. C. Reactions of auranofin and chloro(triethylphosphine)gold
with bovine serum albumin. Inorg. Chem. 1986, 25, 333−339.
(21) Rackham, O.; Nichols, S. J.; Leedman, P. J.; Berners-Price, S. J.;
Filipovska, A. A gold(I) phosphine complex selectively induces
apoptosis in breast cancer cells: implications for anticancer therapeutics
targeted to mitochondria. Biochem. Pharmacol. 2007, 74, 992−1002.
REFERENCES
■
(
1) Alderden, R. A.; Hall, M. D.; Hambley, T. W. The discovery and
development of cisplatin. J. Chem. Educ. 2006, 83, 728−734.
(22) Urig, S.; Fritz-Wolf, K.; Reau, R.; Herold-Mende, C.; Toth, K.;
(
2) Antman, K. H. Introduction: the history of arsenic trioxide in
cancer therapy. Oncologist 2001, 6 (Suppl. 2), 1−2.
3) Lebwohl, D.; Canetta, R. Clinical development of platinum
Davioud-Charvet, E.; Becker, K. Undressing of phosphine gold(I)
complexes as irreversible inhibitors of human disulfide reductases.
Angew. Chem., Int. Ed. 2006, 45, 1881−1886.
(
complexes in cancer therapy: an historical perspective and an update.
Eur. J. Cancer 1998, 34, 1522−1534.
4) Bruijnincx, P. C.; Sadler, P. J. New trends for metal complexes with
anticancer activity. Curr. Opin. Chem. Biol. 2008, 12, 197−206.
5) Giaccone, G. Clinical perspectives on platinum resistance. Drugs
000, 59 (Suppl. 4), 9−17.
6) Kelland, L. R. Preclinical perspectives on platinum resistance. Drugs
000, 59 (Suppl. 4), 1−8.
7) Nobili, S.; Mini, E.; Landini, I.; Gabbiani, C.; Casini, A.; Messori, L.
Gold compounds as anticancer agents: chemistry, cellular pharmacol-
ogy, and preclinical studies. Med. Res. Rev. 2010, 30, 550−580.
8) Gandin, V.; Fernandes, A. P.; Rigobello, M. P.; Dani, B.;
Sorrentino, F.; Tisato, F.; Bjornstedt, M.; Bindoli, A.; Sturaro, A.;
Rella, R.; Marzano, C. Cancer cell death induced by phosphine gold(I)
compounds targeting thioredoxin reductase. Biochem. Pharmacol. 2010,
9, 90−101.
9) Berners-Price, S. J.; Fau-Filipovska, A.; Filipovska, A. Gold
compounds as therapeutic agents for human diseases. Metallomics 2011,
, 863−873.
10) Gabbiani, C.; Messori, L. Protein targets for anticancer gold
compounds: mechanistic inferences. Anticancer Agents Med. Chem.
011, 11, 929−939.
11) Lima, J. C.; Rodriguez, L. Phosphine-gold(I) compounds as
(
23) Arner, E. S.; Holmgren, A. Physiological functions of thioredoxin
and thioredoxin reductase. Eur. J. Biochem. 2000, 267, 6102−6109.
24) Lillig, C. H.; Holmgren, A. Thioredoxin and related molecules:
(
(
from biology to health and disease. Antioxid. Redox Signaling 2007, 9,
25−47.
(
2
(
2
(25) Urig, S.; Becker, K. On the potential of thioredoxin reductase
inhibitors for cancer therapy. Semin. Cancer Biol. 2006, 16, 452−465.
(26) Powis, G.; Kirkpatrick, D. L. Thioredoxin signaling as a target for
cancer therapy. Curr. Opin. Pharmacol. 2007, 7, 392−397.
(27) Nguyen, P.; Awwad, R. T.; Smart, D. D.; Spitz, D. R.; Gius, D.
Thioredoxin reductase as a novel molecular target for cancer therapy.
Cancer Lett. 2006, 236, 164−174.
(
(
(28) Yoo, M. H.; Xu, X. M.; Carlson, B. A.; Gladyshev, V. N.; Hatfield,
D. L. Thioredoxin reductase 1 deficiency reverses tumor phenotype and
tumorigenicity of lung carcinoma cells. J. Biol. Chem. 2006, 281, 13005−
7
(
1
(
3008.
29) Nauser, T.; Steinmann, D.; Koppenol, W. H. Why do proteins use
selenocysteine instead of cysteine? Amino Acids 2012, 42, 39−44.
30) Ott, I.; Qian, X.; Xu, Y.; Vlecken, D. H.; Marques, I. J.; Kubutat,
3
(
(
D.; Will, J.; Sheldrick, W. S.; Jesse, P.; Prokop, A.; Bagowski, C. P. A
gold(I) phosphine complex containing a naphthalimide ligand functions
as a TrxR inhibiting antiproliferative agent and angiogenesis inhibitor. J.
Med. Chem. 2009, 52, 763−770.
2
(
anticancer agents: general description and mechanisms of action.
Anticancer Agents Med. Chem. 2011, 11, 921−928.
12) Rubbiani, R.; Kitanovic, I.; Alborzinia, H.; Can, S.; Kitanovic, A.;
(31) Bindoli, A.; Rigobello, M. P.; Scutari, G.; Gabbiani, C.; Casini, A.;
(
Messori, L. Thioredoxin reductase: A target for gold compounds acting
Onambele, L. A.; Stefanopoulou, M.; Geldmacher, Y.; Sheldrick, W. S.;
Wolber, G.; Prokop, A.; Wolfl, S.; Ott, I. Benzimidazol-2-ylidene gold(I)
complexes are thioredoxin reductase inhibitors with multiple antitumor
properties. J. Med. Chem. 2010, 53, 8608−8618.
as potential anticancer drugs. Coord. Chem. Rev. 2009, 253, 1692−1707.
(32) Fritz-Wolf, K.; Urig, S.; Becker, K. The structure of human
thioredoxin reductase 1 provides insights into C-terminal rearrange-
ments during catalysis. J. Mol. Biol. 2007, 370, 116−127.
(
13) Rubbiani, R.; Can, S.; Kitanovic, I.; Alborzinia, H.; Stefanopoulou,
(33) Viry, E.; Battaglia, E.; Deborde, V.; Muller, T.; Reau, R.; Davioud-
M.; Kokoschka, M.; Monchgesang, S.; Sheldrick, W. S.; Wolfl, S.; Ott, I.
Comparative in vitro evaluation of N-heterocyclic carbene gold(I)
complexes of the benzimidazolylidene type. J. Med. Chem. 2011, 54,
646−8657.
14) Schuh, E.; Pfluger, C.; Citta, A.; Folda, A.; Rigobello, M. P.;
Bindoli, A.; Casini, A.; Mohr, F. Gold(I) carbene complexes causing
Charvet, E.; Bagrel, D. A sugar-modified phosphole gold complex with
antiproliferative properties acting as a thioredoxin reductase inhibitor in
MCF-7 cells. ChemMedChem. 2008, 3, 1667−1670.
(34) Ott, I. On the medicinal chemistry of gold complexes as
anticancer drugs. Coord. Chem. Rev. 2009, 253, 1670−1681.
8
(
K
dx.doi.org/10.1021/jm3009822 | J. Med. Chem. XXXX, XXX, XXX−XXX