2366
S.-C. TSAI et al.
meta-cleavage pathway in Alcaligenes eutrophus. J.
Bacteriol., 154, 1363–1370 (1983).
11) Bayly, R. C., and Wigmore, G. J., Metabolism of phenol
and cresols by mutants of Pseudomonas putida. J.
Bacteriol., 113, 1112–1120 (1973).
12) Fewson, C. A., The identity of the gram-negative
bacterium NCIB8250 (‘Vibrio 01’). J. Gen. Microbiol.,
48, 107–110 (1967).
13) Fialova, A., Boschke, E., and Bely, T., Rapid monitoring
of the biodegradation of phenol-like compounds by the
yeast Candida maltosa using BOD measurements. Int.
Biodet. Biodegr., 54, 69–76 (2004).
albicans TL3 is the first documented microbe that has a
bio-degrading function for both phenol and formalde-
hyde. Being highly tolerant of phenol and having a large
rate of degradation of phenol and a capacity to degrade
phenol and formaldehyde directly in waste water are
features that make C. albicans TL3 particularly useful
for treatment of waste water containing phenolic resin
from its industrial sources. Chen et al. reported that the
power to degrade phenol by Candida tropicalis was
greatly improved with a simple cell-immobilization
process.42) How to enhance the efficiency of degrading
phenol by Candida albicans TL3 using immobilization
technology will therefore be the subject of future work.
14) Santos, V. L., and Linardi, V. R., Phenol degradation by
yeasts isolated from industrial effluents. J. Gen. Appl.
Microbiol., 47, 213–221 (2001).
15) Bastos, A. E. R., Tornisielo, V. L., Nozawa, S. R.,
Trevors, J. T., and Rossi, A., Phenol metabolism by two
microorganisms isolated from Amazonian forest soil
samples. J. Ind. Microbiol. Biotechnol., 24, 403–409
(2000).
16) Cook, K. A., and Cain, R. B., Regulation of aromatic
metabolism in the fungi: metabolic control of the 3-
oxoadipate pathway in the yeast Rhodotorula mucilagi-
nosa. J. Gen. Microbiol., 85, 37–50 (1974).
Acknowledgments
The National Science Council of Taiwan and the
Center of Interdisciplinary Molecular Science of
National Chiao Tung University provided support of
this work. We thank Ms. Yuming Lee for assistance
with the mass-spectrometric analysis.
17) Neujahr, H. Y., and Varga, J. M., Degradation of phenols
by intact cells and cell-free preparations of Trichosporon
cutaneum. Eur. J. Biochem., 13, 37–44 (1970).
18) Semple, K. T., and Cain, R. B., Biodegradation of
phenols by the alga Ochromonas danica. Appl. Environ.
Microbiol., 62, 1265–1273 (1996).
19) Ristanovic, B., Muntanjola-Cvetkovic, M., and Munjko,
I., Phenol degrading fungi from South Adriatic Sea and
Lake Skadar. Eur. J. Appl. Microbiol., 1, 313–322
(1975).
20) Yang, R. D., and Humphrey, A. E., Dynamic and steady
state studies of phenol biodegradation in pure and mixed
cultures. Biotechnol. Bioeng., 17, 1211–1235 (1975).
21) Neujahr, H. Y., and Gaal, A., phenol hydroxylase from
yeast: purification and propcrties of the enzymes from
Trichosporon cutancum. Eur. J. Biochem., 35, 386–400
(1973).
22) Muller, R. H., and Babel, W., Phenol and its derivatives
as heterotrophic substrates for microbial growth—an
energetic comparison. Appl. Microbiol. Biotechnol., 42,
446–451 (1994).
23) Sampaio, J. P., Utilization of low molecular weight
aromatic compounds by heterobasidiomycetous yeasts:
taxonomic implications. Can. J. Microbiol., 45, 491–512
(1999).
24) Middelhoven, W. J., Catabolism of benzene compounds
by ascomycetous and basidiomycetous yeasts and yeast-
like fungi. The literature review and in the experimental
approach. Antonie Van Leeuwenhoek, 63, 125–144
(1993).
25) Glancer-Soljan, M., Landeka Dragicevic, V. T., and
Cacic, L., Aerobic degradation of formaldehyde in
wastewater from the production of melamine resins.
Food Technol. Biotechnol., 39, 197–202 (2001).
26) Azachi, M., Henis, Y., Oren, A., Gurevich, P., and Sarig,
S., Transformation of formaldehyde by a Halomonas sp.
Can. J. Microbiol., 41, 548–552 (1995).
References
1) Swoboda-Colberg, N. G., Chemical contamination of
the environment: sources, types, and fate of synthetic
organic chemicals. In ‘‘Microbial Transformation and
Degradation of Toxic Organic Chemicals’’, eds. Young,
L. Y., and Cerniglia, C. E., Wiley-Liss, Inc., U.S.A.,
pp. 27–74 (1995).
2) Kobayashi, H., and Rittmann, B. E., Microbial removal
of hazardous organic compounds. Environ. Sci. Technol.,
16, 170–183 (1982).
3) Margesin, R., Fonteyne, P. A., and Redl, B., Low-
temperature biodegradation of high amounts of phenol
by Rhodococcus spp. and basidiomycetous yeasts. Res.
Microbiol., 156, 68–75 (2005).
4) Chen, W. M., Chang, J. S., Wu, C. H., and Chang, S. C.,
Characterization of phenol and trichloroethene degrada-
tion by the rhizobium Ralstonia taiwanensis. Res.
Microbiol., 155, 672–680 (2004).
5) El-Sayed, W. S., Ibrahim, M. K., Abu-Shady, M., El-
Beih, F., Ohmura, N., Saiki, H., and Ando, A., Isolation
and characterization of phenol-catabolizing bacteria
from a coking plant. Biosci. Biotechnol. Biochem., 67,
2026–2029 (2003).
6) Yap, L. F., Lee, Y. K., and Poh, C. L., Mechanism for
phenol tolerance in phenol-degrading Comamonas tes-
tosteroni strain. Appl. Microbiol. Biotechnol., 51, 833–
840 (1999).
7) Rahalkar, S. B., Joshi, S. R., and Shivaraman, N.,
Photometabolism of aromatic compounds by Rhodop-
seudomonas palustris. Curr. Microbiol., 26, 1–9 (1993).
8) Gurujeyalakshmi, G., and Oriel, P., Isolation of phenol-
degrading Bacillus stearothermophilus and partial char-
acterization of the phenol hydroxylase. Appl. Environ.
Microbiol., 55, 500–502 (1989).
9) Antai, S. P., and Crawford, D. L., Degradation of phenol
by Streptomyces setonii. Can. J. Microbiol., 29, 142–143
(1983).
27) Kato, N., Shirakawa, K., Kobayashi, H., and Sakazawa,
C., The dismutation of aldehydes by a bacterial enzyme.
10) Hughes, E. J. L., and Bayly, R. C., Control of catechol