40
V. SADHANA ET AL.
Computational analysis
1995, 785; (c) Crabtree, R. H.; Mingos, D. M. P. (Eds.), Comprehen-
sive Organometallic Chemistry 3, Elsevier, 2007, 10-11; (d) Cotton, F.
A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. Advanced Inorganic
Chemistry, 6th ed., John Wiley and Sons: New York, 1999, 1194; (e)
Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395; (f)
Brookhart, M.; Green, M. L. H.; Wong, L. L. Prog. Inorg. Chem. 1988,
36, 1; (g) Friedrich, H. B.; Moss, J. R. Adv. Organomet. Chem. 1991, 33,
235; (h) Ferretti, O. A.; Casella, M. L. Latin Am. Appl. Res. 1995, 25,
125.
All calculations were carried out using the DMol3 density
functional theory (DFT) code as implemented in the Accelrys
Material Studio 6.0 software package.20 The nonlocal general-
ized gradient approximation (GGA) using the PW91 exchange-
correlation functional was used for geometry optimizations in
all cases.21 A double numeric, polarized split valence (DNP)
basis set was used in this study with a DFT semicore pseudopo-
tential to account for the core electrons of P. The size of the DNP
basis set is comparable to Gaussian 6–31 G∗∗, but the DNP is
more accurate than the Gaussian basis set of the same size.22
Geometry optimizations were performed without any symme-
try constraints. The convergence criteria for these optimizations
consisted of the following threshold values: 1 × 10−5 Ha for
4. (a) Rothwell, I. P. Polyhedron 1985, 4, 177-200; (b) Bulls, A. R.; Schae-
fer, W. P.; Serfas, M.; Bercaw, J. E. Organometallics 1987, 6, 1219-
1226; (c) Komiya, S.; Morimoto, Y.; Yamamoto, A.; Yamamoto, T.
Organometallics 1982, 1, 1528-1536; (d) Bruno, J. M.; Smith, G. M.;
Marks, T. J.; Fairs, C. K.; Schultz, A. J.; Williams, J. M. J. Am. Chem.
Soc. 1986, 108, 40-56; (e) Chanberlain, L. R.; Rothwell, A. P.; Rothwell,
I. P. J. Am. Chem. Soc. 1984, 106, 1847-1848.
5. Halpern, J. Inorg. Chim. Acta. 1985, 100, 41-48;
6. (a) Bollermann, T.; Gemel, C.; Fischer, R. A. Coord. Chem. Rev. 2012,
256, 537-555; (b) Drewry, J. A.; Gunning, P. T. Coord. Chem. Rev.
2011, 255, 459-472; (c) Kozlowski, H.; Janicka-Klos, A.; Brasun, J.;
Gaggelli, E.; Valensin, D.; Valensin, G. Coord. Chem. Rev. 2009, 253,
2665-2685; (d) Zhai, T.; Fang, X.; Zeng, H.; Xu, X.; Bando, Y.; Gol-
berg, D. Pure Appl. Chem. 2010, 82, 2027-2053; (e) Van der Kerk,
G. J. M. Pure Appl. Chem. 1972, 30, 389-408; (f) D’Souza, F.; Ito, O.
Coord. Chem. Rev. 2005, 249, 1410-1422; (g) Carmona, E.; Galindo,
A. Angew. Chem. Int. Ed. 2008, 47, 6526-6536; (i) Grirrane, A.; Resa,
I.; Rodriguez, A.; Carmona, E. Coord. Chem. Rev. 2008, 252, 1532-
1539.
−1
˚
˚
energy; 0.002 HaA for gradient and 0.005A for displacement
convergence, while a self-consistent field density convergence
threshold of 1 × 10−6 Ha was specified. All optimized geome-
tries were subjected to a full frequency analysis at the same level
of theory (GGA/PW91/DNP) to verify the nature of the sta-
tionary points. Optimized geometries were characterized by the
absence of imaginary frequencies.
Funding
7. Smith, M. B.; March, J. March’s Advanced Organic Chemistry, 5th ed.,
Wiley: New York, 2001, Ch. 15 and references therein.
8. Nishimura, J.; Kawabata, N.; Furukawa, J. Tetrahedron, 1969, 25, 2647-
2659.
9. Bertinato, P.; Sorensen, E. J.; Meng, D.; Danishefsky, S. J. J. Org. Chem.
1996, 61, 8000-8001.
Dr. ASRK is highly grateful to Council of Scientific and Industrial Research
(CSIR, New Delhi, India) (Ref. No. 01(2541)/11/EMR-II) for the financial
support. Our sincere thanks are due to DST-VIT-FIST for NMR and SIF-
VIT for GC-MS facilities. Mr. Venkatesh Sadhana is thankful to CSIR for
the Junior Research Fellowship.
10. Jeon, S.-J.; Li, H.; Garcia, C.; LaRochelle, L. K.; Walsh, P. J. J. Org. Chem.
2005, 70, 448-455.
11. Jeon, S.-J.; Walsh, P. J. J. Am. Chem. Soc. 2003, 125, 9544-9545.
12. (a) Chen, Y. K.; Walsh, P. J. J. Am. Chem. Soc. 2004, 126, 3702-3703; (b)
Lurain, A. E.; Caroll, P. J.; Walsh, P. J. J. Org. Chem. 2005, 70, 1262-1268.
13. Vaughan, B. A.; Arsenault, E. M.; Chan, S. M.; Waterman, R. J.
Organomet. Chem. 2012, 696, 4327-4331.
14. Chauhan, A. K. S.; Singh, N.; Srivastava, R. C. Appl. Organomet. Chem.
2003, 17, 856-859.
15. Schmidt, S.; Gondzik, S.; Schulz, S.; Bläser, D.; Boese, R.
Organometallics. 2009, 28, 4371-4376.
16. Parr, P. G.; Pearson, R. G. J. Am. Chem. Soc. 1983, 105, 7512-7516.
17. Parr, R. G.; Szentpaly, L.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922-
1924.
18. Chattaraj, P. K.; Maiti, B. J. Am. Chem. Soc. 2003, 125, 2705-2710.
19. McDermott, J. X.; White, J. F.; Whitesides, G. M. J. Am. Chem. Soc.,
1976, 98, 6521-6528.
20. (a) Delley, B. J. Chem. Phys. 2000, 113, 7756; (b) Delley, B. J. Chem.
Phys. 1990, 92, 508.
21. Perdew, J. P.; Wang, Y. Phys. Rev. 1992, B45, 13244-13249.
22. Benedek, N. A.; Snook, I. K.; Latham, K.; Yarovsky, I. J. Chem. Phys.
2005, 122, 144102.
References
1. Hager, E. B.; Sivaramakrishna, A.; Clayton, H.; Mogorosi, M. M.; Moss,
J. R. Coord. Chem. Rev. 2008, 252, 1668-1688.
2. (a) Wilkinson, G.; Stone, F. G. A. (Eds.), Comprehensive Organometal-
lic Chemistry, 5th ed.; Pergamon Press: Oxford, 1995;(b) Yamamoto,
A. J. Organomet. Chem. 1995, 500, 337-348; (c) Yamamoto, A. J.
Organomet. Chem. 2002, 653, 54-57; (d) Yamamoto, A. J. Organomet.
Chem. 2004, 689, 4499-4510; (e) Komiya, S.; Ozaki, S.; Endo, I.; Inoue,
K.; Kasuga, N.; Ishikazi, Y. J. Organomet. Chem. 1992, 433, 337-351; (f)
Shapley, P. A.; Schwab, J. J.; Wilson, S. R. J. Organomet. Chem. 1994, 32,
213-222; (g) Thoonen, S. H. L.; Lutz, M.; Spek, A. L.; Deelman, B. J.;
van Koten, G. Organometallics. 2003, 22, 1156-1159; (h) Soderberg,
B. C. G. Coord. Chem. Rev. 2006, 250, 2411-2490.; (i) Cross, R. J. The
Chemistry of Metal–Carbon Bond, 2nd ed.; Wiley: New York, 1985;(j)
Green, M. L. H.; Nagy, P. L. I. J. Organomet. Chem. 1963, 1, 58-69.
3. (a) James, B. R. In: G. Wilkinson, F. G. A. Stone, E. W. Abel (Eds.),
Comprehensive Organometallic Chemistry; 8th ed.; Pergamon: Oxford,
1982, 285; (b) Takacs, J. M. In: E.W. Abel; F. G. A. Stone; G. Wilkinson
(Eds.), Comprehensive Organometallic Chemistry 2, 12th ed.; Elsevier,