RSC Advances
Paper
presence of 3 mol% LiBr to afford the desired amines in
excellent yield. Furthermore, we demonstrated the high che-
moselectivity of our protocol. DFT calculations for a plausible
reaction pathway are reported. The proposed method involving
the use of a very mild and easy-to-handle catalyst (LiBr) is
a potential, industrially viable protocol for the preparation of
secondary amines through the hydroboration of imines.
C. J. Elsevier, Handbook of homogeneous hydrogenation,
WeinheimWiley-VCH9783527311613, 2007.
5 (a) C. C. Chong and R. Kinjo, Catalytic hydroboration of
carbonyl derivatives, imines, and carbon dioxide, ACS
Catal., 2015, 5, 3238; (b) A. Kaithal, B. Chatterjee and
C.
Gunanathan,
Ruthenium-catalyzed
selective
hydroboration of nitriles and imines, J. Org. Chem., 2016,
81, 11153; (c) J. Wu, H. Zeng, J. Cheng, S. Zheng,
J. A. Golen, D. R. Manke and G. Zhang, Cobalt(II)
Conflicts of interest
coordination polymer as
a
precatalyst for selective
hydroboration of aldehydes, ketones, and imines, J. Org.
Chem., 2018, 83, 9442.
There are no conicts to declare.
6 Z. Huang, S. Wang, X. Zhu, Q. Yuan, Y. Wei, S. Zhou and
X. Mu, Well-Dened amidate-functionalized N-heterocyclic
carbene-supported rare-earth metal complexes as catalysts
for efficient hydroboration of unactivated imines and
nitriles, Inorg. Chem., 2018, 57, 15069.
7 S. Saha and M. S. Eisen, Catalytic recycling of a Th–H bond
via single or double hydroboration of inactivated imines or
nitriles, ACS Catal., 2019, 9, 5947.
Acknowledgements
This study was supported by the National Research Foundation
of Korea Grant funded by the Korean Government
(2017R1D1A1B03035412
for
D.
K.
An
and
2020R1I1A1A01073381 for J. H. Lee).
8 (a) K. Manna, P. Ji, F. X. Greene and W. Lin, Metal–organic
framework nodes support single-site magnesium–alkyl
catalysts for hydroboration and hydroamination reactions,
J. Am. Chem. Soc., 2016, 138, 7488; (b) Y. Wu, C. Shan,
J. Ying, J. Su, J. Zhu, L. L. Liu and Y. Zhao, Catalytic
hydroboration of aldehydes, ketones, alkynes and alkenes
initiated by NaOH, Green Chem., 2017, 19, 4169; (c)
Notes and references
1 H. C. Brown and B. S. Rao, A new technique for the
conversion of olens into organoboranes and related
alcohols, J. Am. Chem. Soc., 1956, 78, 5694.
2 (a) H. C. Brown, B. C. Subba Rao and I. Hydroboration, The
reaction of olens with sodium borohydride-aluminum
chloride. a convenient route to organoboranes and the
anti-Markownikoff hydration of olens, J. Am. Chem. Soc.,
1959, 81(24), 6423; (b) H. C. Brown and S. Krishnamurthy,
Forty years of hydride reductions, Tetrahedron, 1979, 35,
567; (c) H. C. Brown, Y. M. Choi and S. Narasimhan,
Convenient procedure for the conversion of sodium
borohydride into lithium borohydride in simple ether
solvents, Inorg. Chem., 1981, 20, 4454; (d) N. Satyanarayana
and M. Periyssamy, Hydroboration or hydrogenation of
alkenes with CoCl2–NaBH4, Tetrahedron Lett., 1984, 25,
2501; (e) J. H. Billman and A. C. Diesing, Reduction of
schiff bases with sodium borohydride, J. Org. Chem., 1957,
22, 1068.
´
V. A. Pollard, M. A. Fuentes, A. R. Kennedy, R. McLellan
and R. E. Mulvey, Comparing neutral (monometallic) and
anionic (bimetallic) aluminum complexes in hydroboration
catalysis: inuences of lithium cooperation and ligand set,
Angew. Chem., Int. Ed., 2018, 57, 10651; (d) A. K. Jaladi,
H. Kim, J. H. Lee, W. K. Shin, H. Hwang and D. K. An,
Lithium diisobutyl-tert-butoxyaluminum hydride (LDBBA)
catalyzed hydroboration of alkynes and imines with
pinacolborane, New J. Chem., 2019, 43, 16524; (e) D. Yan,
X. Wu, J. Xiao, Z. Zhu, X. Xu, X. Bao, Y. Yao, Q. Shen and
M. Xue, n-Butyllithium catalyzed hydroboration of imines
and alkynes, Org. Chem. Front., 2019, 6, 648.
9 (a) Y. Lin, E. Hatzakis, S. M. McCarthy, K. D. Reichl, T. Lai,
H. P. Yennawar and A. T. Radosevich, P–N Cooperative
borane activation and catalytic hydroboration by
a distorted phosphorous triamide platform, J. Am. Chem.
Soc., 2017, 139, 6008; (b) C. Tien, M. R. Adams,
M. J. Ferguson, E. R. Johnson and A. W. Speed,
Hydroboration catalyzed by 1,2,4,3-triazaphospholenes,
Org. Lett., 2017, 19, 5565; (c) T. Lundrigan, E. N. Welsh,
T. Hynes, C. Tien, M. R. Adams, K. R. Roy, K. N. Robertson
and A. W. Speed, Enantioselective imine reduction
catalyzed by phosphenium ions, J. Am. Chem. Soc., 2019,
141, 14083.
3 (a) T. C. Nugent and M. El-Shazly, Chiral amine synthesis–
recent developments and trends for enamide reduction,
reductive amination, and imine reduction, Adv. Synth.
Catal., 2010, 352, 753; (b) C. Pubill-Ulldemolins, A. Bonet,
´
´
C. Bo, H. Gulyas and E. Fernandez, A new context for
palladium mediated B-addition reaction: an open door to
consecutive functionalization, Org. Biomol. Chem., 2010, 8,
2667; (c) C. C. Chong and R. Kinjo, Catalytic hydroboration
of carbonyl derivatives, imines, and carbon dioxide, ACS
Catal., 2015, 5, 3238.
4 (a) K. Hayes, Industrial processes for manufacturing amines,
Appl. Catal., A, 2001, 221, 187; (b) T. E. Muller, K. C. Hultzsch, 10 P. Eisenberger, A. M. Bailey and C. M. Crudden, Taking the F
M. Yus, F. Foubelo and M. Tada, Hydroamination: direct
addition of amines to alkenes and alkynes, Chem. Rev.,
2008, 108, 3795; (c) S. Nishimura, Handbook of
heterogeneous catalytic hydrogenation for organic synthesis,
Wiley New York etc, 2001; (d) J. G. de Vries and
out of FLP: simple Lewis acid–base pairs for mild reductions
with neutral boranes via borenium ion catalysis, J. Am. Chem.
Soc., 2012, 134, 17384.
34426 | RSC Adv., 2020, 10, 34421–34427
This journal is © The Royal Society of Chemistry 2020