Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
Based on this first experimental mechanistic study we
P. Delis and P. J. Chirik, Science, 2012, 335, 567.
propose
a
catalytic cycle for the nickel-catalysed
DOI: 10.1039/C7CC01655G
5. (a) J. Sun and L. Deng, ACS Catalysis, 2016, 6, 290; (b) C. Chen, M. B.
Hecht, A. Kavara, W. W. Brennessel, B. Q. Mercado, D. J. Weix and P. L.
Holland, J. Am. Chem. Soc., 2015, 137, 13244; (c) F. Yu, X.-C. Zhang, F.-F.
Wu, J.-N. Zhou, W. Fang, J. Wu and A. S. C. Chan, Org. Biomol. Chem.,
2011, 9, 5652; (d) T. Inagaki, L. T. Phong, A. Furuta, J.-i. Ito and H.
Nishiyama, Chem. Eur. J., 2010, 16, 3090.
6. (a) I. Buslov, F. Song and X. Hu, Angew. Chem., 2016, 128, 12483;
(b) T. J. Steiman and C. Uyeda, J. Am. Chem. Soc., 2015, 137, 6104; (c) S.
Chakraborty, P. Bhattacharya, H. Dai and H. Guan, Acc. Chem. Res.,
2015, 48, 1995; (d) I. Buslov, J. Becouse, S. Mazza, M. Montandon-Clerc
and X. Hu, Angew. Chem. Int. Ed., 2015, 54, 14523; (e) J. Zheng, C.
Darcel and J.-B. Sortais, Catal. Sci. Tech., 2013, 3, 81; (f) M. I. Lipschutz
and T. D. Tilley, Chem. Commun., 2012, 48, 7146; (g) B. L. Tran, M. Pink
and D. J. Mindiola, Organometallics, 2009, 28, 2234; (h) S. Chakraborty,
J. A. Krause and H. Guan, Organometallics, 2009, 28, 582; (i) L. P.
Bheeter, M. Henrion, L. Brelot, C. Darcel, M. J. Chetcuti, J.-B. Sortais and
V. Ritleng, Adv. Synth. Catal., 2012, 354, 2619; (j) X. Du and Z. Huang,
ACS Catalysis, 2017, 7, 1227.
hydrosilylation of epoxides which is similar to a mechanism
proposed by Guan et al. for the nickel-catalysed hydrosilylation
of aldehydes and ketones.6h Initially, the precatalyst 1a or 1b is
rapidly transformed into the nickel hydride 2a or 2b by
reaction with the silane. The apparent rate law, the low H/D
kinetic isotope effect, as well as the observation of NiH as the
resting state suggests that the rate-limiting step in this
hydrosilylation of epoxides is the insertion of the epoxide into
the nickel hydride bond. The resulting alkoxido complex then
reacts rapidly with the silane in a
-bond metathesis to
regenerate the nickel hydrido complex and release the silyl
ether.
7. N. A. Eberhardt and H. Guan, Chem. Rev., 2016, 116, 8373.
8. (a) L. Postigo and B. Royo, Adv. Synth. Catal., 2012, 354, 2613; (b)
F.-F. Wu, J.-N. Zhou, Q. Fang, Y.-H. Hu, S. Li, X.-C. Zhang, A. S. C. Chan
and J. Wu, Chem. Asian J., 2012, 7, 2527; (c) S. Kundu, W. W. Brennessel
and W. D. Jones, Inorg. Chem., 2011, 50, 9443; (d) Y. Wei, S.-X. Liu, H.
Mueller-Bunz and M. Albrecht, ACS Catalysis, 2016, 6, 8192.
9. (a) I. Buslov, S. C. Keller and X. Hu, Org. Lett., 2016, 18, 1928; (b) Y.
Nakajima, K. Sato and S. Shimada, Chem. Rec., 2016, 16, 2379; (c) V.
Srinivas, Y. Nakajima, W. Ando, K. Sato and S. Shimada, Catal. Sci. Tech.,
2015, 5, 2081.
10. (a) H. Nagashima, A. Suzuki, T. Iura, K. Ryu and K. Matsubara,
Organometallics, 2000, 19, 3579; (b) S. Park and M. Brookhart, Chem.
Commun., 2011, 47, 3643; (c) Y.-Q. Zhang, N. Funken, P. Winterscheid
and A. Gansäuer, Angew. Chem. Int. Ed., 2015, 54, 6931; (d) H. Mimoun,
J. Org. Chem, 1999, 64, 2582.
Scheme 5 Mechanistic proposal for the nickel- catalysed hydrosilylation of
epoxides.
In conclusion, we have developed the first protocol for
nickel-catalysed anti-Markovnikov hydrosilylation of epoxides.
Such primary alcohols, which are of considerable synthetic
value, are usually obtained by hydroboration and subsequent
oxidation. We point out that our catalytic system also provides
a useful tool for the selective preparation of β-deuterated
alcohols, which can be difficult to obtain by alternative
catalytic methods.17
11. (a) C. Wang, L. Luo and H. Yamamoto, Acc. Chem. Res., 2016, 49,
193; (b) M. G. Beaver and T. F. Jamison, Org. Lett., 2011, 13, 4140; (c) A.
N. Desnoyer, E. G. Bowes, B. O. Patrick and J. A. Love, J. Am. Chem. Soc.,
2015, 137, 12748; (d) Y. Zhao and D. J. Weix, J. Am. Chem. Soc., 2014,
136, 48.
We acknowledge funding by the Deutsche Forschungs-
gemeinschaft (Ga 488/9-1) as well as the University of
Heidelberg. We thank Prof. A.S.K Hashmi for allowing us to use
his ball mill.
12. J. Wenz, A. Kochan, H. Wadepohl and L. H. Gade, Inorg. Chem,
2017, Inorg. Chem., 2017, 56, 3631.
Notes and references
13. (a) C. Rettenmeier, H. Wadepohl and L. H. Gade, Chem. Eur. J.,
2014, 20, 9657; (b) J. Breitenfeld, R. Scopelliti and X. Hu,
Organometallics, 2012, 31, 2128; (c) J. Wenz, C. A. Rettenmeier, H.
Wadepohl and L. H. Gade, Chem. Commun., 2016, 52, 202; (d) C. A.
Rettenmeier, J. Wenz, H. Wadepohl and L. H. Gade, Inorg. Chem., 2016,
55, 8214.
14. S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T. Friscic, F.
Grepioni, K. D. M. Harris, G. Hyett, W. Jones, A. Krebs, J. Mack, L. Maini,
A. G. Orpen, I. P. Parkin, W. C. Shearouse, J. W. Steed and D. C. Waddell,
Chemical Society Reviews, 2012, 41, 413.
15. (a) V. Gudla and R. Balamurugan, Tetrahedron Lett., 2012, 53, 5243;
(b) J. Bah, V. R. Naidu, J. Teske and J. Franzén, Adv. Synth. Catal., 2015,
357, 148; (c) M. W. C. Robinson, K. S. Pillinger, I. Mabbett, D. A. Timms
and A. E. Graham, Tetrahedron, 2010, 66, 8377; (d) I. Karamé, M. L.
Tommasino and M. Lemaire, Tetrahedron Lett., 2003, 44, 7687; (e) D. J.
Vyas, E. Larionov, C. Besnard, L. Guénée and C. Mazet, J. Am. Chem.
Soc., 2013, 135, 6177.
16. (a) P. Bhattacharya, J. A. Krause and H. Guan, Organometallics,
2011, 30, 4720; (b) O. G. Shirobokov, L. G. Kuzmina and G. I. Nikonov, J.
Am. Chem. Soc., 2011, 133, 6487.
1. (a) C. Song, C. Ma, Y. Ma, W. Feng, S. Ma, Q. Chai and M. B. Andrus,
Tetrahedron Lett., 2005, 46, 3241; (b) B. Chatterjee and C. Gunanathan,
Chem. Commun., 2014, 50, 888; (c) Y. Nishibayashi, I. Takei, S. Uemura
and M. Hidai, Organometallics, 1998, 17, 3420.
2. (a) H. Nishiyama, H. Sakaguchi, T. Nakamura, M. Horihata, M.
Kondo and K. Itoh, Organometallics, 1989, 8, 846; (b) L. H. Gade, V.
César and S. Bellemin-Laponnaz, Angew. Chem. Int. Ed., 2004, 43, 1014;
(c) W.-L. Duan, M. Shi and G.-B. Rong, Chem. Commun., 2003, 2916; (d)
M. Sawamura, R. Kuwano and Y. Ito, Angew. Chem., 1994, 106, 92.
3. (a) R. Malacea, R. Poli and E. Manoury, Coord. Chem. Rev., 2010,
254, 729; (b) A. R. Chianese and R. H. Crabtree, Organometallics, 2005,
24, 4432; (c) C. Cheng and M. Brookhart, Angew. Chem. Int. Ed., 2012,
51, 9422.
4. (a) T. Bleith and L. H. Gade, J. Am. Chem. Soc., 2016, 138, 4972; (b)
M. D. Greenhalgh, A. S. Jones and S. P. Thomas, ChemCatChem, 2015, 7,
190; (c) T. Bleith, H. Wadepohl and L. H. Gade, J. Am. Chem. Soc., 2015,
137, 2456; (d) K. Junge, K. Schröder and M. Beller, Chem. Commun.,
2011, 47, 4849; (e) A. P. Dieskau, J.-M. Begouin and B. Plietker, Eur. J.
Org. Chem., 2011, 2011, 5291; (f) J. Yang and T. D. Tilley, Angew. Chem.
Int. Ed., 2010, 49, 10186; (g) A. M. Tondreau, J. M. Darmon, B. M. Wile,
S. K. Floyd, E. Lobkovsky and P. J. Chirik, Organometallics, 2009, 28,
3928; (h) R. H. Morris, Chem. Soc. Rev., 2009, 38, 2282; (i) B. K. Langlotz,
H. Wadepohl and L. H. Gade, Angew. Chem. Int. Ed., 2008, 47, 4670; (j)
17. T. Jiménez, A. G. Campaña, B. Bazdi, M. Paradas, D. Arráez-Román,
A. Segura-Carretero, A. Fernández-Gutiérrez, J. E. Oltra, R. Robles, J.
Justicia and J. M. Cuerva, Eur. J. Org. Chem., 2010, 2010, 4288.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins