Gupta et al.
JOCArticle
CHART 1
FIGURE 7. Plot of kobsd vs [Et
2
NLi] in THF (3.9 M) and toluene
NLi at 0 °C. The
cosolvent for the reaction of 1 (0.004 M) with Et
curve depicts an unweighted least-squares fit to kobsd=k[Et
2
n
2
NLi]
-3
(
k=(8.7 ( 0.4) ꢀ 10 , n=0.54 ( 0.03).
1
3
Thus, the idealized rate law is described by eq 4. The prod-
uct ratios are sensitive to isotopic substitution. The measured
isotope effects using 1,1-1-d2 and 2,2-1-d (Table 1) are
CHART 2
2
1
4
15
consistent with an S 2 substitution and E2 elimination.
N
GC-MS analyses also confirmed β- rather than R-elimina-
tions. The stereochemistries of N-alkylation and elimina-
1
6
1
7
tion were not addressed experimentally.
1=2
2
-
d½1ꢁ=dt ¼ ðkalk þ kelimÞ½Et2NLiꢁ ½THFꢁ ½1ꢁ ð4Þ
A variety of seemingly plausible transition structures for
substitution and elimination are shown in Chart 1. Density
functional theory (DFT) calculations using the SVP basis set
1
8
for Br and 6-31G(d) for the rest of the atoms afforded
‡
20
enthalpies of activation (ΔH , kcal/mol) that include thermal
In contrast, we failed to locate structures akin to II. Optimi-
zations of β-eliminations III-VI afforded only 11 and 12 (types
III and V), both containing N-Li contacts. No structures of
corrections at 298.15 K. 1-Bromododecane, Et NLi, and
THF were modeled using EtBr, Me NLi and Me O, respec-
2
2
2
21
tively, to restrict the number of conformers. Calculated
activation free energies were ridiculously high even with
MP2/6-31G*//B3LYP/6-31G(d) single-point calculations.
Enthalpies of activation are reported according to eq 5. Al-
though absolute energies are not terribly informative, the
relative values and calculated geometries are.
type IV or VI displaying Br-Li contacts could be found.
(
18) All calculations were executed using Gaussian 03, revision B.04;
Gaussian, Inc.: Pittsburgh, PA, 2003. See Supporting Information for the
full list of authors. The combination of the Ahlrichs all-electron SVP basis set
for second-row atoms and 6-31G* for the rest is denoted as 631A and has
been previously applied to mechanistic studies on organolithium-mediated
reactions: Nakamura, E.; Yamanaka, M.; Yoshikai, N.; Mori, S. Angew.
Chem., Int. Ed. 2001, 40, 1935. Mori, J.; Nakamura, E.; Morokuma, K.
J. Am. Chem. Soc. 2000, 122, 7294 and references therein.
(19) Recent theoretical studies on S 2 reactions involving lithium-
N
containing species: (i) No solvent: (a) Ren, Y.; Gai, J.-G.; Xiong, Y.; Lee,
K.-H.; Chu, S.-Y. J. Phys. Chem. A 2007, 111, 6615. (b) Streitwieser, A.;
Jayasree, E. G.; Leung, S. S.-H; Choy, G. S.-C. J. Org. Chem. 2005, 70, 8486.
ΔH‡
q
1
=2ðEt2NLiÞ ðSÞ þ RX þ 2S
f ½ðEt2NLiÞðSÞ ðRXÞꢁ
2
2
3
ðS ¼ Me2OÞ
ð5Þ
(
4
2
c) Pratt, L. M.; Nguyen, N. V.; Ramachandran, B. J. Org. Chem. 2005, 70,
279. (d) Pomelli, C. S.; Bianucci, A. M.; Crotti, P.; Favero, L. J. Org. Chem.
004, 69, 150. (e) Ren, Y.; Chu, S. Y. J. Comput. Chem. 2004, 25, 461.
The results of the DFT computations (B3LYP/6-31G(d)) are
illustrated in Chart 2. Optimization of type I structures resulted
in legitimate transition structure 10 displaying an N-Li inter-
(
f) Xiong, Y.; Zhu, H.; Ren, Y. J. Mol. Struct. 2003, 664-665, 279. (g) Leung,
S. S.-H.; Streitwieser, A. J. Comput. Chem. 1998, 19, 1325. (ii) Dielectric
solvation models: (h) Streitwieser, A.; Jayasree, E. G.; Hasanayn, F.; Leung,
S. S.-H. J. Org. Chem. 2008, 73, 9426. (i) Ren, Y.; Li, M.; Wong, N.-B.; Chu,
S.-Y. J. Mol. Model. 2006, 12, 182. (j) Ren, Y.; Chu, S. Y. J. Phys. Chem. A
2004, 108, 7079. (k) Zhu, H.; Ren, Y.; Ren, J. J. Mol. Struct. 2004, 686, 65.
(iii) Microsolvation models: (l) Streitwieser, A.; Jayasree, E. G. J. Org. Chem.
2007, 72, 1785. (m) Ando, K. J. Org. Chem. 2006, 71, 1837. (n) Ando, K. J.
Am. Chem. Soc. 2005, 127, 3964. See also reference 20a.
(20) RBr-Li interactions do not appear to be stabilizing: (a) Zuend, S. J.;
Ramirez, A.; Lobkovsky, E.; Collum, D. B. J. Am. Chem. Soc. 2006, 128,
5939. (b) Ikuta, Y.; Tomoda, S. Org. Lett. 2004, 6, 189.
(21) For additional examples showing that Br leaving groups do not
require metal assistance during the alkylation of lithium-based nucleophiles,
see: (a) Zuend, S. J.; Ramirez, A.; Lobkovsky, E.; Collum, D. B. J. Am.
Chem. Soc. 2006, 128, 5939. (b) Ikuta, Y.; Tomoda, S. Org. Lett. 2004, 6, 189.
(c) For a general discussion of lithium-assisted departure of the leaving
group, see: Reich, H. J.; Sanders, A. W.; Fiedler, A. T.; Bevan, M. J. J. Am.
Chem. Soc. 2002, 124, 13386.
1
9
action and a highly bent N-C-Br bond angle (155°).
(
13) We define the idealized rate law as that obtained by rounding the
observed reaction orders to the nearest rational order.
14) (a) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
(
Chemistry; University Science, 2006; Chapter 11 . (b) Fang, Y.-R.; Westaway,
K. C. Can. J. Chem. 1991, 69, 1017. (c) Westaway, K. C.; Lai, Z.-G. Can.
J. Chem. 1989, 67, 345.
(
15) (a) Remenar, J. F.; Collum, D. B. J. Am. Chem. Soc. 1998, 120, 4081.
b) Remenar, J. F.; Collum, D. B. J. Am. Chem. Soc. 1997, 119, 5573.
16) Dehydrobrominations of 2,2-1-d -dodecane afforded exclusively
-dodecene, whereas dehydrobrominations of 1,1-1-d -dodecane yielded
-dodecene .
(
(
2
1
1
-d
-d
1
2
2
(
17) (a) Bock, P. L.; Whitesides, G. M. J. Am. Chem. Soc. 1974, 96, 2826.
b) Whitesides, G. M.; Fischer, W. F., Jr.; San Filippo, J., Jr.; Bashe, R. W.;
House, H. O. J. Am. Chem. Soc. 1969, 91, 4871.
(
J. Org. Chem. Vol. 75, No. 24, 2010 8395