Chemistry & Biology
Falcipains as Direct Targets of Symplostatin 4
Synthesis of Sym4 and Sym4 Derivatives
Deu, E., Verdoes, M., and Bogyo, M. (2012). New approaches for dissecting
protease functions to improve probe development and drug discovery. Nat.
Struct. Mol. Biol. 19, 9–16.
The synthesis and characterization of compounds 1 to 8 as well as Sym4 and
Sym4 derivatives are described in Supplemental Experimental Procedures.
Dondorp, A.M., Nosten, F., Yi, P., Das, D., Phyo, A.P., Tarning, J., Lwin, K.M.,
Ariey, F., Hanpithakpong, W., Lee, S.J., et al. (2009). Artemisinin resistance in
Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467.
SUPPLEMENTAL INFORMATION
Drahl, C., Cravatt, B.F., and Sorensen, E.J. (2005). Protein-reactive natural
products. Angew. Chem. Int. Ed. Engl. 44, 5788–5809.
Fonovi cꢀ , M., and Bogyo, M. (2008). Activity-based probes as a tool for func-
tional proteomic analysis of proteases. Expert Rev. Proteomics 5, 721–730.
ACKNOWLEDGMENTS
Greenbaum, D., Medzihradszky, K.F., Burlingame, A., and Bogyo, M. (2000).
Epoxide electrophiles as activity-dependent cysteine protease profiling and
discovery tools. Chem. Biol. 7, 569–581.
The authors would like to thank Dr. Rosenthal for providing recombinant FP2
and FP3. This research was funded by the Max Planck Society and the
Deutsche Forschungsgemeinschaft HO 3983/4-1 (to R.H.), by an ERC starting
grant (No. 258413, to M.K.), and NIH Grants R01EB005011 and R01AI078947
Greenbaum, D., Baruch, A., Hayrapetian, L., Darula, Z., Burlingame, A.,
Medzihradszky, K.F., and Bogyo, M. (2002a). Chemical approaches for func-
tionally probing the proteome. Mol. Cell. Proteomics 1, 60–68.
(to M.B.).
Greenbaum, D.C., Baruch, A., Grainger, M., Bozdech, Z., Medzihradszky, K.F.,
Engel, J., DeRisi, J., Holder, A.A., and Bogyo, M. (2002b). A role for the
protease falcipain 1 in host cell invasion by the human malaria parasite.
Science 298, 2002–2006.
Received: April 23, 2012
Revised: September 5, 2012
Accepted: September 27, 2012
Published: December 20, 2012
Groll, M., Schellenberg, B., Bachmann, A.S., Archer, C.R., Huber, R., Powell,
T.K., Lindow, S., Kaiser, M., and Dudler, R. (2008). A plant pathogen virulence
factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452,
REFERENCES
7
55–758.
Abr a´ moff, M.D., Magalhaes, P.J., and Ram, S.J. (2004). Image processing with
Guiguemde, W.A., Shelat, A.A., Garcia-Bustos, J.F., Diagana, T.T., Gamo,
F.J., and Guy, R.K. (2012). Global phenotypic screening for antimalarials.
Chem. Biol. 19, 116–129.
ImageJ. Biophotonics Int. 11, 36–42.
Arastu-Kapur, S., Ponder, E.L., Fonovi cꢀ , U.P., Yeoh, S., Yuan, F., Fonovi cꢀ , M.,
Grainger, M., Phillips, C.I., Powers, J.C., and Bogyo, M. (2008). Identification of
proteases that regulate erythrocyte rupture by the malaria parasite
Plasmodium falciparum. Nat. Chem. Biol. 4, 203–213.
Harbut, M.B., Velmourougane, G., Dalal, S., Reiss, G., Whisstock, J.C., Onder,
O., Brisson, D., McGowan, S., Klemba, M., and Greenbaum, D.C. (2011).
Bestatin-based chemical biology strategy reveals distinct roles for malaria
M1- and M17-family aminopeptidases. Proc. Natl. Acad. Sci. USA 108,
E526–E534.
Benetti, S., De Risi, C., Marchetti, P., Pollini, G.P., and Zanirato, V. (2002).
Synthesis of 2,5-disubstituted pyrroles and pyrrolidines by intramolecular
cyclization of 6-amino-3-keto sulfones. Synthesis 3, 331–338.
Heal, W.P., Dang, T.H., and Tate, E.W. (2011). Activity-based probes: discov-
ering new biology and new drug targets. Chem. Soc. Rev. 40, 246–257.
B o¨ ttcher, T., Pitscheider, M., and Sieber, S.A. (2010). Natural products and
their biological targets: proteomic and metabolomic labeling strategies.
Angew. Chem. Int. Ed. Engl. 49, 2680–2698.
Jeffery, D.A., and Bogyo, M. (2003). Chemical proteomics and its application
to drug discovery. Curr. Opin. Biotechnol. 14, 87–95.
Chandramohanadas, R., Park, Y., Lui, L., Li, A., Quinn, D., Liew, K., Diez-Silva,
M., Sung, Y., Dao, M., Lim, C.T., et al. (2011). Biophysics of malarial parasite
exit from infected erythrocytes. PLoS ONE 6, e20869.
Jou, G., Gonz a´ lez, I., Albericio, F., Lloyd-Williams, P., and Giralt, E. (1997).
Total synthesis of dehydrodidemnin B. Use of uronium and phosphonium
salt coupling reagents in peptide synthesis in solution. J. Org. Chem. 62,
3
54–366.
Clerc, J., Florea, B.I., Kraus, M., Groll, M., Huber, R., Bachmann, A.S., Dudler,
R., Driessen, C., Overkleeft, H.S., and Kaiser, M. (2009a). Syringolin A selec-
tively labels the 20 S proteasome in murine EL4 and wild-type and bortezo-
mib-adapted leukaemic cell lines. ChemBioChem 10, 2638–2643.
Kaschani, F., Clerc, J., Krahn, D., Bier, D., Hong, T.N., Ottmann, C., Niessen,
S., Colby, T., van der Hoorn, R.A., and Kaiser, M. (2012). Identification of
a selective, activity-based probe for glyceraldehyde 3-phosphate dehydroge-
nases. Angew. Chem. Int. Ed. Engl. 51, 5230–5233.
Clerc, J., Groll, M., Illich, D.J., Bachmann, A.S., Huber, R., Schellenberg, B.,
Dudler, R., and Kaiser, M. (2009b). Synthetic and structural studies on syringo-
lin A and B reveal critical determinants of selectivity and potency of protea-
some inhibition. Proc. Natl. Acad. Sci. USA 106, 6507–6512.
Klemba, M., Gluzman, I., and Goldberg, D.E. (2004). A Plasmodium falciparum
dipeptidyl aminopeptidase I participates in vacuolar hemoglobin degradation.
J. Biol. Chem. 279, 43000–43007.
Clerc, J., Li, N., Krahn, D., Groll, M., Bachmann, A.S., Florea, B.I., Overkleeft,
H.S., and Kaiser, M. (2011). The natural product hybrid of Syringolin A and
Glidobactin A synergizes proteasome inhibition potency with subsite selec-
tivity. Chem. Commun. (Camb.) 47, 385–387.
Kolb, H.C., Finn, M.G., and Sharpless, K.B. (2001). Click chemistry: diverse
chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl.
40, 2004–2021.
Kolodziejek, I., Misas-Villamil, J.C., Kaschani, F., Clerc, J., Gu, C., Krahn, D.,
Niessen, S., Verdoes, M., Willems, L.I., Overkleeft, H.S., et al. (2011).
Proteasome activity imaging and profiling characterizes bacterial effector
syringolin A. Plant Physiol. 155, 477–489.
Conroy, T., Guo, J.T., Hunt, N.H., and Payne, R.J. (2010). Total synthesis and
antimalarial activity of symplostatin 4. Org. Lett. 12, 5576–5579.
Conroy, T., Guo, J.T., Linington, R.G., Hunt, N.H., and Payne, R.J. (2011). Total
synthesis, stereochemical assignment, and antimalarial activity of gallinamide
A. Chemistry 17, 13544–13552.
Linington, R.G., Clark, B.R., Trimble, E.E., Almanza, A., Ure n˜ a, L.D., Kyle, D.E.,
and Gerwick, W.H. (2009). Antimalarial peptides from marine cyanobacteria:
isolation and structural elucidation of gallinamide A. J. Nat. Prod. 72, 14–17.
Cravatt, B.F., Wright, A.T., and Kozarich, J.W. (2008). Activity-based protein
profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev.
Biochem. 77, 383–414.
Lomenick, B., Olsen, R.W., and Huang, J. (2011). Identification of direct protein
targets of small molecules. ACS Chem. Biol. 6, 34–46.
Deu, E., Leyva, M.J., Albrow, V.E., Rice, M.J., Ellman, J.A., and Bogyo, M.
Mayer, A.M., Glaser, K.B., Cuevas, C., Jacobs, R.S., Kem, W., Little, R.D.,
McIntosh, J.M., Newman, D.J., Potts, B.C., and Shuster, D.E. (2010). The
odyssey of marine pharmaceuticals: a current pipeline perspective. Trends
Pharmacol. Sci. 31, 255–265.
(
2010). Functional studies of Plasmodium falciparum dipeptidyl aminopepti-
dase I using small molecule inhibitors and active site probes. Chem. Biol.
7, 808–819.
1
1554 Chemistry & Biology 19, 1546–1555, December 21, 2012 ª2012 Elsevier Ltd All rights reserved