+
was purified by column chromatography (pentane/Et O, 95 : 5,
Dihydronaphthalene 37. GC-MS m/z (%): 130 (100, M ), 128
2
6
: 4) to give 66 mg of theaspirone 13 (50% yield) and 13 mg
(81, M − 2), 115 (52, M − CH ), 102 (16, M − 28), 91 (10, M
3
1
of theaspirol 14 (10% yield). Theaspirone 13. H-NMR
400 MHz, CDCl , δ): 5.72 (s, 1H), 4.24–4.16 (m, 1H), 2.40 (m,
− 39), 77 (24, M − 53), 63 (40, M − 67), 51 (64, M − 79).
+
(
Ketone 41. GC-MS m/z (%): 146 (36, M ), 131 (16, M − CH ),
3
3
1
1
H), 2.35–2.30 (m, 1H), 2.20 (m, 1H), 2.05–2.01 (m, 1H),
.83–1.75 (m, 1H), 1.55–1.44 (m, 1H), 1.98–1.97 (m, 3H), 1.30
118 (100, M − 28), 115 (17, M − 31), 90 (88, M − 56), 77 (11,
M − 69), 63 (41, M − 83), 51 (32, M − 95).
3
13
(
(
d, J = 6.0 Hz, 3H), 1.02 (2 s, 3H), 0.97 (s, 3H); C-NMR
100 MHz, CDCl , δ): 198.6, 168.5, 125.0, 88.7, 77.9, 50.4,
Biotransformation of diphenylmethane 42: according to the
general procedure 42 μL diphenylmethane 42 (0.25 mmol) were
treated with 1000 mg lyophilisate for 48 h. Benzophenone 43.
3
4
0.9, 34.5, 32.8, 24.6/23.1, 20.6, 19.1; GC-MS m/z (%): 208
+
+
(
1
M ), 153 (10, M − 55), 152 (100, M − 56), 111 (22, M − 97),
GC-MS m/z (%): 182 (44, M ), 105 (100, M − 77), 77 (65, M −
10 (85, M − 98), 96 (15, M − 112), 82 (15, M − 126), 69 (15,
105), 51 (35, M − 131).
1
M − 139), 55 (12, M − 153). Theaspirol 14. H-NMR
400 MHz, CDCl , δ): 5.33–5.32 (m, 1H), 4.25–4.20 (m, 1H),
(
3
4
1
.16–4.08 (m, 1H), 2.10–1.37 (m, 6H), 1.75–1.74 (m, 3H),
.27–1.25 (m, 3H), 0.95 (s, 3H), 0.90 (s, 3H); C-NMR
1
3
Notes and references
(
3
1
100 MHz, CDCl , δ): 143.7, 124.9, 88.7, 77.3, 66.3, 45.4, 39.4,
5.0/34.6, 25.1/22.3, 20.8, 18.2; GC-MS m/z (%): 210 (M ),
1 R. Wohlgemuth, Curr. Opin. Biotechnol., 2010, 21, 713–724.
2 F. S. Sariaslani and J. P. N. Rosazza, Enzyme Microb. Technol., 1984, 6,
3
+
2
42–253.
S. Riva, Curr. Opin. Chem. Biol., 2001, 5, 106–111.
4 J. Ogawa and S. Shimizu, Trends Biotechnol., 1999, 17, 13–21.
92 (96, M − H O), 177 (48, M − 33), 154 (100, M − 56), 149
2
3
(
−
9
24, M − 61), 135 (44, M − 75), 125 (22, M − 85), 121 (66, M
5
6
S. Bershtein and D. S. Tawfik, Curr. Opin. Chem. Biol., 2008, 12,
51–158.
P. Bernhardt and S. E. O’Connor, Curr. Opin. Chem. Biol., 2009, 13,
5–42.
89), 119 (32, M − 91), 107 (38, M − 103), 98 (35, M − 112),
1
3 (98, M − 117), 119 (68, M − 101), 133 (51, M − H O), 141
2
(
35, M − 33), 145 (29, M − 61), 155 (50, M − 75).
3
Biotransformation of cyclohexene 18: according to the general
7 E. Andrianantoandro, S. Basu, D. K. Karig and R. Weiss, Mol. Syst.
Biol., 2006, 2 (2006), 0028.
procedure 101 μL cyclohexene 18 (0.25 mmol) were treated
with 600 mg lyophilisate for 48 h. Cyclohexenone 19. GC-MS
m/z (%): 96 (24, M ), 68 (100, M − C H ). Cyclohexenol 20.
GC-MS m/z (%): 98 (22, M ), 97 (30, M − 1), 83 (40, M −
Me), 79 (77, M − 19), 77 (40, M − 21), 70 (100, M − 28).
Biotransformation of cycloheptene 22: according to the
general procedure 58 μL cycloheptene 22 (0.25 mmol) were
treated with 800 mg lyophilisate for 120 h. Cycloheptanone 24.
GC-MS m/z (%): 112 (22, M ), 84 (20, M − C H ), 68 (63, M
−
(
M − 43), 66 (68, M − 44), 54 (100, M − 56).
Biotransformation of tert-butyl cyclohexene 32: according to
the general procedure 42 μL tert-butyl cyclohexene 32
8
9
W. A. Loughlin, Bioresour. Technol., 2000, 74, 49–62.
A. Schmid, J. S. Dordick, B. Hauer, A. Kiener, M. Wubbolts and
B. Witholt, Nature, 2001, 409, 258–268.
+
2
4
+
10 T. Newhouse and P. S. Baran, Angew. Chem., Int. Ed., 2011, 50, 3362–
374.
1 J. Muzart, Bull. Soc. Chim. Fr., 1986, 65–77.
2 J. Muzart, Mini-Rev. Org. Chem., 2009, 6, 9–20.
13 P. Müller and T. T. Khoi, Tetrahedron Lett., 1977, 18, 1939–1942.
3
1
1
14 W. G. Dauben, M. Lorber and D. S. Fullerton, J. Org. Chem., 1969, 34,
+
3587–3592.
2
4
1
1
5 J. A. R. Salvador and J. H. Clark, Chem. Commun., 2001, 33–34.
6 J. A. R. Salvador and S. M. Silvestre, Tetrahedron Lett., 2005, 46, 2581–
2584.
44), 55 (100, M − 57). Cyclohepten-1-one 23. GC-MS m/z
+
%): 110 (30, M ),81 (98, M − 29), 68 (59, M − 42), 67 (71,
1
1
7 R. A. Miller, W. Li and G. R. Humphrey, Tetrahedron Lett., 1996, 37,
3429–3432.
8 J. A. R. Salvador, M. L. Sáe Melo and A. S. Campos Neves, Tetrahedron
Lett., 1997, 38, 119–122.
(
0.25 mmol) were treated with 600 mg lyophilisate for 23 h.
19 A. Celik, S. L. Flitsch and N. J. Turner, Org. Biomol. Chem., 2005, 3,
930–2934.
2
tert-Butyl cyclohexenone 33. GC-MS m/z (%): 152 (26, M+),
1
9
20 G. Bellucci, C. Chiappe, L. Pucci and P. G. Gervasi, Chem. Res. Toxicol.,
37 (8, M − CH ), 124 (27, M − C H ), 109 (100, M − C H ),
3
2
4
3 7
1996, 9, 871–874.
6 (94, M − 56), 81 (40, M − 71), 67 (58, M − 85), 57 (55,
21 A. J. J. Straathof, S. Panke and A. Schmid, Curr. Opin. Biotechnol.,
002, 13, 548–556.
2
M − 95), 55 (31, M − 97), 51 (27, M − 101).
2
2
2 J. Tao and J.-H. Xu, Curr. Opin. Chem. Biol., 2009, 13, 43–50.
3 M. A. Fraatz, S. J. L. Riemer, R. Stöber, R. Kaspera, M. Nimtz,
R. G. Berger and H. Zorn, J. Mol. Catal. B: Enzym., 2009, 61, 202–
207.
Biotransformation of terpinene 35: according to the general
procedure 40 μL terpinene 35 (0.25 mmol) were treated with
8
CDCl , δ): 7.14–7.10 (m, 4H), 2.89–2.85 (m, 1H), 2.31(s, 3H),
1
1
1
M − C H ), 77 (13, M − 57), 65 (13, M − 69).
Biotransformation of 1,2-dihydronaphthalene 37: according
to the general procedure 45 μL 1,2-dihydronaphthalene 37
1
00 mg lyophilisate for 96 h. Cymene 36. H-NMR (400 MHz,
24 L. Janssens, H. L. Depooter, N. M. Schamp and E. J. Vandamme,
3
Process Biochem., 1992, 27, 195–215.
25 O. Kirk, T. V. Borchert and C. C. Fuglsang, Curr. Opin. Biotechnol.,
2002, 13, 345–351.
3
13
.24 (d, 6H, J = 7.0 Hz); C-NMR (100 MHz, CDCl , δ):
3
46.0, 135.3, 129.1, 126.4, 33.8, 24.2, 2.1; GC-MS m/z (%):
+
26 S. Krugener, U. Krings, H. Zorn and R. G. Berger, Bioresour. Technol.,
34 (24, M ), 119 (100, M − Me), 117 (16, M − 17), 91 (34,
2010, 101, 457–462.
3
7
2
2
7 J. Onken and R. G. Berger, J. Biotechnol., 1999, 69, 163–168.
8 U. Krings, N. Lehnert, M. A. Fraatz, B. R. Hardebusch, H. Zorn and
R. G. Berger, J. Agric. Food Chem., 2009, 57, 9944–9950.
29 H. Willershausen and H. Graf, Food Biotechnol, 1991, 4, 109.
(0.25 mmol) were treated with 800 mg lyophilisate for 48 h.
+
30 R. Huang, P. A. Christenson, I. M. Labuda, US Patent Application
20,0786 (2001); Chem. Abstr. 134 : 221521
Naphthalene 38. GC-MS m/z (%): 128 (100, M ), 102 (10, M
6
+
−
C H ). Enone 39. GC-MS m/z: 146 (46, M ), 115 (62, M −
31 M. A. Fraatz, R. G. Berger and H. Zorn, Appl. Microbiol. Biotechnol.,
2009, 83, 35–41.
2
2
CH O), 104 (100, M − C H O).
3
2 2
32 R. Kaspera, U. Krings, T. Nanzad and R. G. Berger, Appl. Microbiol. Bio-
technol., 2005, 67, 477–483.
Biotransformation of tetrahydronaphthalene 40: according
to the general procedure 34 μL tetrahydronaphthalene 40
33 R. F. Simpson, C. R. Strauss and P. J. Williams, Chem. Ind., 1977,
663–664.
(0.25 mmol) were treated with 800 mg lyophilisate for 74 h. 1,2-
This journal is © The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 639–644 | 643