R. J. Anderson, J. C. Morris / Tetrahedron Letters 42 (2001) 311–313
313
Table 1. Optimization of the reaction conditions for the
synthesis of 3 (R=H)a
Perry, N. B.; Ettouati, L.; Litaudon, M.; Blunt, J. W.;
Munro, M. H. G.; Jameson, G. B. Tetrahedron 1994, 50,
3993–4000.
Entry
Equivalents of
Et3SiH
Equivalents of
TFA
Yield of 3
(R=H)
´
2. (a) Alvarez, M.; Ferna´ndez, D.; Joule, J. A. Synthesis
´
1999, 615–620. (b) Alvarez, M.; Ferna´ndez, D.; Joule, J.
A. J. Chem. Soc., Perkin Trans. 1 1999, 249–255.
3. Fresneda, P. M.; Molina, P.; Delgado, S.; Bleda, J. A.
Tetrahedron Lett. 2000, 41, 4777–4780.
1
2
3
4
5
2.0
4.0
8.0
8.1
7.8
8.3
8.2
8.2
4.3
2.0
15
18
22
34
33
´
4. Professor Alvarez and co-workers have recently com-
pleted a synthesis of the model compound deoxyvariolin
´
B. See: Alvarez, M.; Ferna´ndez; D.; Joule, J. A. Tetra-
a Reactions were performed at reflux under an atmosphere of argon
using 1.3 mmol of 5 (R=H). All yields refer to isolated pure
products.
hedron Lett. 2001, 42, 315.
5. Converting a thiomethyl group into an amino group is a
common procedure. For a recent example see: Adlington,
R. M.; Baldwin, J. E.; Catterick, D.; Pritchard, G. J. J.
Chem. Soc., Perkin Trans. 1 1999, 855–866.
In conclusion, the synthesis of the 5-substituted
pyrido[3%,2%:4,5]pyrrolo[1,2-c]pyrimidine skeleton of the
variolins has been completed in only three steps, start-
ing from commercially available materials. The key step
in the synthesis was the one-pot deoxygenation/cycliza-
tion of triarylmethanol 5 (R=H). Introduction of
amine functionality as required for the natural products
has been achieved using an oxidation/substitution pro-
cedure. Efforts are currently focussed on adapting this
strategy so that the total synthesis of the variolins can
be completed.
6. Majeed, A. J.; Antonsen, Ø.; Benneche, T.; Undheim, K.
Tetrahedron 1989, 45, 993–1006.
7. Some of the reagent systems investigated include
Me3SiCl/NaI/MeCN,NaCNBH3/ZnI2,Pd–C/AlCl3/cyclo-
hexene, P/I2/HI, H2/Pd–C, LiAlH4/AlCl3, NaBH4/TFA,
and H2/Adams’ catalyst/TFA.
8. For a review of ionic hydrogenation see: Kursanov, D.
N.; Parnes, Z. N.; Loim, N. M. Synthesis 1974, 633–651.
1
9. Selected spectroscopic data for compound 3 (R=H): H
NMR (300 MHz, CDCl3): l 2.68 (s, 3H), 2.73 (s, 3H),
7.34 (d, J=5.4 Hz, 1H), 7.51 (dd, J=4.6, 8.1 Hz, 1H),
7.82 (d, J=6.3 Hz, 1H), 8.06 (d, J=6.3 Hz, 1H), 8.51 (d,
J=5.4 Hz, 1H), 8.60 (dd, J=1.7, 4.6 Hz, 1H), 8.64 (dd,
J=1.7, 8.1 Hz, 1H); 13C NMR (75 MHz, CDCl3): l 14.3,
14.9, 101.5, 108.4, 113.0, 120.8, 120.9, 128.1, 137.6, 140.0,
141.9, 143.1, 155.2, 156.7, 161.0, 172.5; HRMS: calcd for
C16H13N352S2 (M+) 339.0612, found 339.0617.
Acknowledgements
We thank PharmaMar SA, Tres Cantos for financial
assistance, Professor M. H. G. Munro and Professor J.
W. Blunt for their support of this work, Professor P. J.
Steel for helpful discussions and Mr. B. Clark for mass
spectrometry experiments.
1
10. Selected spectroscopic data for 13: H NMR (300 MHz,
CDCl3): l 3.80 (s, 3H), 3.81 (s, 3H), 4.69 (d, J=5.9 Hz,
2H), 4.89 (d, J=5.4 Hz, 2H), 5.52 (br, exchangeable,
1H), 6.89–6.93 (m, 4H), 6.98 (d, J=5.4 Hz, 1H), 7.33–
7.42 (m, 6H), 7.63 (d, J=6.8 Hz, 1H), 8.27 (dd, J=1.0,
5.2 Hz, 1H), 8.31 (d, J=5.4 Hz, 1H), 8.56 (br d, J=7.8
Hz, 1H), 10.36 (br t, non-exchangeable, J=5.4 Hz, 1H);
13C NMR (75 MHz, CDCl3): l 44.3, 45.1, 55.3 (2×CH3),
100.6, 101.5, 107.9, 113.9, 114.0, 120.0, 121.9, 128.4,
128.6, 128.8, 130.3, 131.4, 138.4, 139.5, 143.0, 143.4,
149.0, 157.4, 158.7, 158.9, 162.1, 162.2; HRMS: calcd for
C30H27N7O2 (M+) 517.2226, found 517.2242.
References
1. (a) Perry, N. B.; Ettouati, L.; Litaudon, M.; Blunt, J. W.;
Munro, M. H. G.; Parkin, S.; Hope, H. Tetrahedron
1994, 50, 3987–3992. (b) Trimurtulu, G.; Faulkner, D. J.;
.