Page 9 of 11
Journal of the American Chemical Society
guided radical-based synthesis of C(sp3)-C(sp3) linkages on DNA. Proc. Nat.
Elias Klarhorst (TU Dortmund) gave support for the synthesis of
Acad. Sci. USA 2018, 115, E6404-E6410. b) Phelan, J. P.; Lang, S. B.; Sim,
J.; Berritt, S.; Peat, A. J.; Billings, K.; Fan, L.; Molander, G. A. Open-Air
Alkylation Reactions in Photoredox-Catalyzed DNA-Encoded Library
Synthesis. J. Am. Chem. Soc. 2019, 141, 3723-3732; c) Kölmel, D. K.;
Loach, R. P.; Knauber, T.; Flanagan, M. E. Employing Photoredox Catalysis
for DNA-Encoded Chemistry: Decarboxylative Alkylation of α-Amino Acids.
ChemMedChem 2018, 13, 2159-2165.
1
2
3
4
5
6
7
8
DNA conjugates.
ABBREVIATIONS
CMC, critical micellar concentration; DEL, DNA-encoded
library; dp, degree of polymerization; GBB, Gröbke-Blackburn-
Bienaymé; TEM, transmission electron microscopy.
(18) Schreiber, S. L. Target-Oriented and Diversity-Oriented Organic
Synthesis in Drug Discovery. Science 2000, 287, 1964−1969.
REFERENCES
(1) Brenner, S.; Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl.
(19) Galloway, W. R.; Isidro-Llobet, A.; Spring, D. R. Diversity-oriented
synthesis as a tool for the discovery of novel biologically active small
molecules. Nat. Commun. 2010, 1, 80, doi: 10.1038/ncomms1081.
(20) MacLellan, P.; Nelson, A. A conceptual framework for analysing and
planning synthetic approaches to diverse lead-like scaffold. Chem. Commun.,
2013, 49, 2383−2393.
9
Acad. Sci. U. S. A. 1992, 89, 5381−5383.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) Franzini, R.; Neri, D.; Scheuermann, J. DNA-Encoded Chemical
Libraries: Advancing beyond Conventional Small-Molecule Libraries. Acc.
Chem. Res. 2014, 47, 1247−1255.
(3) Winssinger, N. Nucleic Acid-programmed Assemblies: Translating
Instruction into Function in Chemical Biology. Chimia 2013, 67, 340−348.
(4) Kleiner, R. E.; Dumelin, C. E.; Liu, D. R. Small-molecule discovery from
DNA-encoded chemical libraries. Chem. Soc. Rev. 2011, 40, 5707−5717.
(5) Salamon, H.; Skopic, M. K; Jung, K.; Bugain, O.; Brunschweiger, A.
Chemical Biology Probes from Advanced DNA-encoded Libraries. ACS
Chem. Biol. 2016, 11, 296−307.
(21) Wawer, M. J.; Li, K.; Gustafsdottir, S. M.; Ljosa, V.; Bodycombe, N. E.;
Marton, M. A.; Sokolnicki, K. L.; Bray, M. A.; Kemp, M. M.; Winchester, E.;
Taylor, B.; Grant, G. B.; Hon, C. S.; Duvall, J. R.; Wilson, J. A.; Bittker, J. A.;
Dančík, V.; Narayan, R.; Subramanian, A.; Winckler, W.; Golub, T. R.;
Carpenter, A. E.; Shamji, A. F.; Schreiber, S. L., Clemons, P. A. Toward
performance-diverse small-molecule libraries for cell-based phenotypic
screening using multiplexed high-dimensional profiling. Proc. Natl. Acad. Sci.
USA. 2014, 111, 10911−10916.
(6) Goodnow Jr, R. A.; Dumelin, C. E.; Keefe, A. D. DNA-encoded
chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug
Discovery, 2017, 16, 131−147.
(22) van Hattum, H.; Waldmann, H. Biology-Oriented Synthesis: Harnessing
the Power of Evolution. J. Am. Chem. Soc. 2014, 136, 11853−11859.
(23) Hu, Y.; Stumpfe, D.; Bajorath, J. Computational Exploration of Molecular
Scaffolds in Medicinal Chemistry. J. Med. Chem. 2016, 59, 4062−4076.
(24) Schneider, P.; Schneider, G. Privileged Structures Revisited. Angew.
Chem. Int. Ed. Engl. 2017, 56, 7971−7974.
(7) Mannocci, L.; Zhang, Y.; Scheuermann, J.; Leimbacher, M.; De Bellis,
G.; Rizzi, E.; Dumelin, C.; Melkko, S.; Neri, D. High-throughput sequencing
allows the identification of binding molecules isolated from DNA-encoded
chemical libraries. Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 17670–17675.
(8) Clark, M. A. ; Acharya, R. A.; Arico-Muendel, C. C.; Belyanskaya, A. L.;
Benjamin, D. R.; Carlson, N. R.; Centrella, P. A.; Chiu, C. H.; Creaser, S. P.;
Cuozzo, J. W.; Davie, C. P.; Ding, Y.; Franklin, G. J.; Franzen, K. D.; Gefter,
M. L.; Hale, S. P.; Hansen, N. J.; Israel, D. I.; Jiang, J.; Kavarana, M. J.;
Kelley, M. S.; Kollmann, C. S.; Li, F.; Lind, K.; Mataruse, S.; Medeiros, P. F.;
Messer, J. A.; Myers, P.; O'Keefe, H.; Oliff, M. C.; Rise, C. E.; Satz, A. L.;
Skinner, S. R.; Svendsen, J. L.; Tang, L.; van Vloten, K.; Wagner, R. W.; Yao,
G.; Zhao, B.; Morgan, B. A. Design, synthesis and selection of DNA-encoded
small-molecule libraries. Nat. Chem. Biol., 2009, 5, 647–654.
(25) Vitaku, E.; Smith, D. T.; Njardarson, J. T. Analysis of the Structural
Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles
among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57,
10257−10274.
(26) a) Li, H.; Sun, Z.; Wu, W.; Wang, X.; Zhang, M.; Lu, X.; Zhong, W.; Dai,
D. Inverse-Electron-Demand Diels-Alder Reactions for the Synthesis of
Pyridazines on DNA. Org. Lett. 2018, 20, 7186−7191; b) Buller, F.; Mannocci,
L.; Zhang Y. X.; Dumelin, C. E.; Scheuermann, J.; Neri, D. Design and
synthesis of
a novel DNA-encoded chemical library using Diels-Alder
(9) Hansen, M. H.; Blakskjaer, P.; Petersen, L. K.; Hansen, T. H.; Højfeldt, J.
W.; Gothelf, K. V.; Hansen, N. J. A Yoctoliter-Scale DNA Reactor for Small-
Molecule Evolution. J. Am. Chem. Soc., 2009, 131, 1322–1327.
(10) Halpin, D. R.; Harbury, P. B. DNA Display II. Genetic Manipulation of
Combinatorial Chemistry Libraries for Small-Molecule Evolution. PLoS Biol.,
2004, 2, E174.
cycloadditions. Bioorg. Med. Chem. Lett. 2008, 18, 5926-5931; c) Gartner, Z.
J.; Kanan, M. W.; Liu, D. R. Expanding the reaction scope of DNA-templated
synthesis. Angew. Chem. Int. Ed. 2002, 41, 1796-1800; d) Gerry, C. J.; Yang,
Z.; Stasi, M.; Schreiber, S. L. DNA-Compatible [3
+ 2] Nitrone-Olefin
Cycloaddition Suitable for DEL Syntheses. Org. Lett. 2019, 21, 1325-1330.
(27) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Complete Field Guide to
Asymmetric BINOL-phosphate derived Brønsted Acid and Metal Catalysis:
History and Classification by Mode of Activation; Brønsted Acidity, Hydrogen
Bonding, Ion Pairing, and Metal Phosphates. Chem. Rev. 2014, 114,
9047−9153.
(11) Gartner, Z. J.; Tse, B. N.; Grubina, R.; Doyon, J. B.; Snyder, T. M.; Liu,
D. R. DNA-Templated Organic Synthesis and Selection of a Library of
Macrocycles. Science, 2004, 305, 1601–1605.
(12) Franzini, R. M.; Randolph, C. Chemical Space of DNA-Encoded
Libraries. J. Med. Chem. 2016, 59, 6629−6644.
(28) Caruthers, M. H. Gene synthesis machines: DNA chemistry and its uses.
Science 1985, 230, 281−285.
(13) Malone, M. L.; Paegel, B. M. What is a “DNA-Compatible” Reaction?
ACS Comb. Sci. 2016, 18, 182−187.
(29) Chouikhi, D.; Ciobanu, M.; Zambaldo, C.; Duplan, V.; Barluenga, S.;
Winssinger, N. Expanding the scope of PNA-encoded synthesis (PES): Mtt-
protected PNA fully orthogonal to fmoc chemistry and a broad array of robust
diversity-generating reactions. Chem.–Eur. J. 2012, 18, 12698−12704.
(30) Needels, M. C.; Jones, D. G.; Tate, E. H.; Heinkel, G. L.; Kochersperger,
L. M.; Dower, W. J.; Barrett, R. W.; Gallop, M. A. Generation and screening
of an oligonucleotide-encoded synthetic peptide library. Proc. Natl. Acad. Sci.
USA. 1993, 90, 10700−10704.
(14) a) Satz, A. L.; Cai, J.; Chen, Y.; Goodnow, R.; Gruber, F.; Kowalczy, A.;
Petersen, A.; Naderi-Oboodi, G.; Orzechowski, L.; Strebel, Q. DNA
Compatible Multistep Synthesis and Applications to DNA Encoded Libraries.
Liu, D. R. Translation of DNA into Synthetic N-Acyloxazolidines. J. Am.
Chem. Soc. 2004, 126, 5090-5092; c) Fan, L.; Davie, C. P.
Zirconium(IV)‐Catalyzed Ring Opening of on‐DNA Epoxides in Water.
ChemBioChem 2017, 18, 843-847.
(31) Klika Škopić, M.; Salamon, H.; Bugain, O.; Jung, K.; Gohla, A.; Doetsch,
L. J.; dos Santos, D.; Bhat, A.; Wagner, B.; Brunschweiger, A. Acid- and
Au(I)-mediated synthesis of hexathymidine-DNA-heterocycle chimeras, an
efficient entry to DNA-encoded libraries inspired by drug structures. Chem.
Sci. 2017, 8, 3356−3361.
(15) Kodadek, T. The rise, fall and reinvention of combinatorial chemistry.
Chem. Commun. 2011, 47, 9757−9763.
(16) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.;
Wilson, D. M.; Wood, A. Organic synthesis provides opportunities to
transform drug discovery. Nat. Chem. 2018, 10, 383−394.
(32) Berezin, I. V.; Martinek, K.; Yatsimirskii, A. K. Russ. Chem. Rev. 1973,
42, 787−802.
(17) a) Wang, J.; Lundberg, H.; Asai, S.; Martín-Acosta, P.; Chen, J. S.;
Brown, S.; Farrell, W.; Dushin, R. G.; O’Donnell, C. J.; Ratnayake, A. S.;
Richardson, P.; Liu, Z.; Qin, T.; Blackmond, D. G.; Baran, P. S. Kinetically
9
ACS Paragon Plus Environment