C O M M U N I C A T I O N S
The 9CA/HMB system shows very low ΦSEP in nonpolar solvents
and in ILs incapable of mediating electron transfer (entries 4, 9,
and 11). However, in BuPyr-NTf2, we detect higher yields of MV+•
(entry 7). This is significant as 9CA/HMB gives a singlet radical
ion pair with a very low barrier to back electron transfer.
Nonetheless, this system provides efficient charge separation in
BuPyr-NTf2.
A comparison of entry 6 with 8 and 10 demonstrates that electron
transfer from BP-• to MV2+ (kPROBE) is an order of magnitude faster
in BuPyr-NTf2 than the other ILs, which supports the solvent-
mediated ET pathway for BuPyr-NTf2. A solely diffusive ET
pathway is illustrated in entries 5, 8, and 10. Electron transfer from
DQ-• to MV2+ is approximately 1 × 108 M-1 s-1 in these cases.
The LFP experiments described above show that BuPyr-NTf2
can actively facilitate PET reactions by providing a solvent-mediated
pathway for electron transfer. Further work will be necessary to
fully elucidate the nature of this process. For example, the current
experiments do not distinguish a solvent hopping pathway from a
pathway in which a reduced solvent cation diffuses to the probe.
In the former case, greater rates may be realized in more organized
media such as ionic liquid crystals.25 Results from the latter will
be reported in due course.
Acknowledgment. We would like to thank the National Science
Foundation for financial support. R.C.V. would like to thank the
ARCS Foundation for their generous support.
Figure 1. (A) Transient absorption spectra of BP/DABCO/MV2+ in BuPyr-
NTf2 with inset of waveform at 610 nm, and (B) transient absorption spectra
of DQ/DABCO/MV2+ BuPyr-NTf2 with inset of waveform at 610 nm.
Supporting Information Available: Experimental procedures
including preparation of ILs, viscosity measurements, and general
procedures for LFP experiments, detailed procedure for kinetic simula-
tions. This material is available free of charge via the Internet at http://
pubs.acs.org.
Table 1. Rate Constants and Quantum Yields for PET Reactions
a
a
a
entry
solvent
acceptor
kBET
kPROBE
kDEC
ΦSEP
1
2
3
4
5
6
7
8
9
CH3CN
CH3CN
CH3CN
benzene
BuPyr-NTf2
BuPyr-NTf2
BuPyr-NTf2
BMIM- NTf2
BMIM- NTf2
OMIM-PF6
OMIM-PF6
DQ
BP
9CA
9CA
DQ
BP
9CA
BP
9CA
BP
15.3
47.4
b
38.4
14.2
b
1.74
5.18
b
0.50
0.70
0.25
0.05
0.90
0.89
0.65c
0.85
0.03
N/Ad
0.20
b
b
b
References
0.45
1.03
3.64
0.10
b
0.15
1.00
0.49
0.21
b
0.59
0.12
0.05
0.15
b
(1) Wasielewski, M. R. Chem. ReV. 1992, 92, 435-461.
(2) DeFranco, J. A.; Schmidt, B. S.; Lipson, M.; Malliaras, G. G. Org.
Electron. 2006, 7, 22-28.
(3) Lewis, F. D. Photochem. Photobiol. 2005, 81, 65-72.
(4) Tang, X.; Dmochowski, I. J. Org. Lett. 2005, 7, 279-282.
(5) Griesbeck, A. G.; Hoffmann, N.; Warzecha, K.-d. Acc. Chem. Res. 2007,
40, 128-140.
10
11
1.80
b
0.15
b
N/Ad
b
9CA
(6) Marcus, R. A. J. Chem. Phys. 1965, 43, 2654-2657.
(7) Rehm, D.; Weller, A. Ber. Bunsen-Ges. Phys. Chem. 1969, 73, 834-
839.
a Rate constants are in units of M-1 s-1 and are ×109. Measurements
were made at 20 ( 1 °C. Values determined are within (10% error. b Signal
not sufficient enough to accurately determine rate. c Determined within (5%
error. d See Supporting Information for experimental detail.
(8) Rehm, D.; Weller, A. Isr. J. Chem. 1970, 8, 259-271.
(9) Gould, I. R.; Ege, D.; Moser, J. E.; Farid, S. J. Am. Chem. Soc. 1990,
112, 4290-4301.
(10) Gould, I. R.; Young, R. H.; Moody, R. E.; Farid, S. J. Phys. Chem. 1991,
95, 2068-2080.
(11) Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis; Wiley-VCH:
Weinheim, Germany, 2003.
solvent cations and is further confirmed by the observation of the
growth of MV+• when the probe is added (Figure 1a). In contrast,
DQ-•, which is not expected to be capable of solvent reduction, is
detected in the DQ/DABCO LFP experiment (at 445 nm). Addition
of the probe also results in formation of MV+• but at a lower rate
(Figure 1b).
Quantitative analysis of the LFP data shows that solvent media-
tion increases both rates and efficiencies for electron transfer. Rate
constants kBET, kPROBE, and kDEC were determined from numerical
simulations of LFP transient absorption signals for MV+•, unless
otherwise noted and assuming the mechanism in eqs 2-4. The
reported values (Table 1) represent averages from at least five
measurements on three different independently prepared solutions
(g15 total). In all cases, independent measurements provided values
within 10% of the mean. Additionally, ΦSEP was determined using
the yield of MV+• at saturating concentrations of MV2+ (see
Supporting Information).
(12) Buzzeo, M. C.; Evans, R. G.; Compton, R. G. ChemPhysChem 2004, 5,
1106-1120.
(13) Baker, G. A.; Baker, S. N.; Pandey, S.; Bright, F. V. Analyst 2005, 130,
800-808.
(14) Vieira, R. C.; Falvey, D. F. J. Phys. Chem. B 2007, 111, 5023-5029.
(15) Fletcher, K. A.; Storey, I. A.; Hendricks, A. E.; Pandey, S.; Pandey, S.
Green Chem. 2001, 3, 210-215.
(16) Karmakar, R.; Samanta, A. J. Phys. Chem. A 2002, 106, 6670-6675.
(17) Chowdhury, P. K.; Halder, M.; Sanders, L.; Calhoun, T.; Anderson, J.
L.; Armstrong, D. W.; Song, X.; Petrich, J. W. J. Phys. Chem. B 2004,
108, 10245-10255.
(18) Shim, Y.; Kim, H. J. J. Phys. Chem. B 2007, 111, 4510-4519.
(19) Lynden-Bell, R. M. J. Phys. Chem. B 2007, 111, 10800-10806.
(20) Lockard, J. V.; Wasielewski, M. R. J. Phys. Chem. B 2007, 111, 11638-
11641.
(21) Samanta, A. J. Phys. Chem. B 2006, 110, 13704-13716.
(22) Paul, A.; Samanta, A. J. Phys. Chem. B 2007, 111, 1957-1962.
(23) Behar, D.; Neta, P.; Schultheisz, C. J. Phys. Chem. A 2002, 106, 3139-
3147.
(24) Skrzypczak, A.; Neta, P. J. Phys. Chem. A 2003, 107, 7800-7803.
(25) Binnemans, K. Chem. ReV. 2005, 105, 4148-4204.
JA077797F
9
J. AM. CHEM. SOC. VOL. 130, NO. 5, 2008 1553