Inorganic Chemistry
Communication
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was funded by the National Natural Science
Foundation (Grants 21371155 and 91022013) and the Research
Foundation for the Doctoral Program of Higher Education of
China (Grant 20124101110002).
REFERENCES
■
(1) (a) Bradshaw, D.; Garai, A.; Huo, J. Chem. Soc. Rev. 2012, 41,
2344−2381. (b) Li, J.-R.; Sculley, J.; Zhou, H.-C. Chem. Rev. 2012, 112,
869−932. (c) He, Y.; Zhou, W.; Krishna, R.; Chen, B. Chem. Commun.
2012, 48, 11813−11831. (d) Lang, J.-P.; Xu, Q.-F.; Yuan, R.-X.;
Abrahams, B. F. Angew. Chem., Int. Ed. 2004, 43, 4741−4745.
(2) (a) Liu, D.; Lang, J.; Abrahams, B. F. J. Am. Chem. Soc. 2011, 133,
11042−11045. (b) Lu, Z.; Zhang, R.; Li, Y.; Guo, Z.; Zheng, H. J. Am.
Chem. Soc. 2011, 133, 4172−4174. (c) Xu, Z.; Wang, Q.; Li, H.; Meng,
W.; Han, Y.; Hou, H.; Fan, Y. Chem. Commun. 2012, 48, 5736−5738.
(d) Liu, D.; Ren, Z.-G.; Li, H.-X.; Lang, J.-P.; Li, N.-Y.; Abrahams, B. F.
Angew. Chem., Int. Ed. 2010, 49, 4767−4770.
Figure 3. View of the difference of the asymmetric unit of complexes 1
(left) and 2 (right) and the color change from 1 to 2. Symmetry codes:
A, −0.5 + x, 0.5 + y, 0.5 − z; B, 1 − x, 1 − y, 1 − z.
spin-state transition of the FeII centers from HS to low spin (LS).
We consider that the HS → LS transition may play a crucial role
in the changes of the catalytic and magnetic properties from 1 to
2. For one thing, the HS → LS transition empties the eg orbitals.
This implies that the presence of unoccupied antibonding eg
orbitals of the FeII centers can favor the electron-pair acceptance
from the substrates and, therefore, formation of the required
reaction intermediates.12 For another, associated with the HS →
LS transition, there is a decrease in the relative number of
unpaired electrons, and hence the χMT value of 2 is lower than
that of 1 at room temperature. Also, the reduction of the Fe−N
bonds shortens the Fe−Fe distance and strengthens the
antiferromagnetic coupling effect of the FeII centers.
(3) (a) Duriska, M. B.; Neville, S. M.; Batten, S. B. Chem. Commun.
2009, 5579−5581. (b) Cook, T. R.; Zheng, Y.-R.; Stang, P. J. Chem. Rev.
2013, 113, 734−777.
(4) (a) Dinca, M.; Long, J. R. J. Am. Chem. Soc. 2007, 129, 11172−
11176. (b) Zhao, J.; Mi, L.; Hu, J.; Hou, H.; Fan, Y. J. Am. Chem. Soc.
2008, 130, 15222−15223. (c) Zhang, Z.; Zhang, L.; Wojtas, L.; Nugent,
P.; Eddaoudi, M.; Zaworotko, M. J. J. Am. Chem. Soc. 2012, 134, 924−
927.
(5) (a) Deng, H.; Grunder, S.; Cordova, K. E.; Valente, C.; Furukawa,
́
H.; Hmadeh, M.; Gandara, F.; Whalley, A. C.; Liu, Z.; Asahina, S.;
Kazumori, H.; O’Keeffe, M.; Terasaki, O.; Stoddart, J. F.; Yaghi, O. M.
Science 2012, 336, 1018−1023. (b) Gadzikwa, T.; Farha, O. K.; Mulfort,
K. L.; Hupp, J. T.; Nguyen, S. T. Chem. Commun. 2009, 3720−3722.
(6) (a) Xuan, W.; Zhu, C.; Liu, Y.; Cui, Y. Chem. Soc. Rev. 2012, 41,
1677−1695. (b) Das, M. C.; Xiang, S.; Zhang, Z.; Chen, B. Angew.
Chem., Int. Ed. 2011, 50, 10510−10520.
(7) (a) Wang, X. Y.; Wang, L.; Wang, Z. M.; Gao, S. J. Am. Chem. Soc.
2006, 128, 674−675. (b) Halder, G. J.; Kepert, C. J.; Moubaraki, B.;
Murray, K. S.; Cashion, J. D. Science 2002, 298, 1762−1765.
(8) (a) Li, B.; Wei, R. J.; Tao, J.; Huang, R.-B.; Zheng, L. S.; Zheng, Z. J.
Am. Chem. Soc. 2010, 132, 1558−1566. (b) Lu, Z. Z.; Zhang, R.; Li, Y. Z.;
Guo, Z. J.; Zheng, H. G. J. Am. Chem. Soc. 2011, 133, 4172−4174. (c) Li,
C.-P.; Du, M. Chem. Commun. 2011, 47, 5958−5972.
(9) (a) Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X.-M. Chem. Rev.
2012, 112, 1001−1033. (b) Aromía, G.; Barriosa, L. A.; Roubeaub, O.;
Gameza, P. Coord. Chem. Rev. 2011, 255, 485−546.
(10) Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Chem. Commun.
2012, 48, 11275−11288.
(11) (a) Ohmori, O.; Kawano, M.; Fujita, M. J. Am. Chem. Soc. 2004,
126, 16292−16293. (b) Lv, G.-C.; Wang, P.; Liu, Q.; Fan, J.; Chen, K.;
Sun, W.-Y. Chem. Commun. 2012, 48, 10249−10251.
57Fe Mossbauer spectroscopy and XPS show that all Fe atoms
̈
of the two complexes are in the oxidation state of II (Figures 2b
and S10 in the SI). As shown in Figure 2b, at 300 K, the spectrum
of complex 1 displays a quadrupole doublet, with the isomer shift
(δ) and quadrupole splitting (ΔEQ) characteristic of HS FeII
(Table S1 in the SI). Because all FeII centers in complex 1 are
equivalent with a [FeN5O] octahedral geometry, there are only
two doublets at 300 K. As for complex 2, apart from the main
doublet (blue and green lines) characterized by the quadrupole
splitting with ΔEQ = 2.17 and 2.82 mm s−1 and isomer shift δ =
0.98 and 1.04 mm s−1 corresponding to the HS state of FeII (S =
2), a poorly resolved doublet (turquoise line) of relative area
7.1% appears with ΔEQ = 0.21 mm s−1 and an isomer shift value
of 0.55 mm s−1 and is assigned to LS FeII (S = 0). The existence of
LS is also confirmed by the UV/vis absorption spectra. As shown
in Figure S6 in the SI, the spin-allowed 1A1 → 1T1 d−d transition
of the LS FeII appears as a 620 nm shoulder of the intense singlet
metal-to-ligand charge-transfer band at 480 nm.13 This result is
consistent with the 7% reduction of the χMT value of 1.
In conclusion, a FeII-based MOF, 1, loses a free water molecule
and converts to 2. Dehydration bears the responsibility for the
reduction of the Fe−O and Fe−N bonds and for the HS → LS
transition of 7.1% of the center ions. These results give rise to
changes in the catalytic and magnetic properties of the FeII-based
MOF.
(12) (a) Niu, S.; Hall, M. B. Chem. Rev. 2000, 100, 353−406.
(b) Platero-Prats, A. E.; Snejko, N.; Iglesias, M.; Monge, A.; Gutirrez-
Puebla, E. Chem.Eur. J. 2013, 19, 15572−15582.
(13) (a) Decurtins, S.; Gtlich, P.; Hasselbach, K. M.; Hauser, A.;
Spiering, H. Inorg. Chem. 1985, 24, 2174−2178. (b) Lever, A. B. P.
Inorganic Electronic Spectroscopy, 2nd ed.; Elsevier: Amsterdam, The
Netherlands, 1984; Vol. 33.
ASSOCIATED CONTENT
* Supporting Information
X-ray crystallographic data in CIF format, experimental details,
and spectroscopic data. This material is available free of charge
■
S
3262
dx.doi.org/10.1021/ic500004s | Inorg. Chem. 2014, 53, 3260−3262