J . Org. Chem. 1999, 64, 9719-9721
9719
more, the combination reagent provides selective dealky-
lation in certain cases.
Bor on Tr ich lor id e/Tetr a -n -Bu tyla m m on iu m
Iod id e: A Mild , Selective Com bin a tion
Rea gen t for th e Clea va ge of P r im a r y Alk yl
Ar yl Eth er s
A comparative example highlights the reactivity of the
BCl3/n-Bu4NI reagent system. In procedures described
by Sun et al.,14 variously substituted dimethoxyfluo-
robenzenes (e.g., 1) were cleaved with BBr3 (3 equiv/
CH2Cl2). The reaction typically requires 24-48 h at
ambient temperatures, and additional BBr3 is often
required (0.5 equiv) to completely drive the conversion
of 1 to 2.
Paige R. Brooks, Michael C. Wirtz, Michael G. Vetelino,
Diane M. Rescek, Graeme F. Woodworth,
Bradley P. Morgan, and J otham W. Coe*
Central Research Division, Pfizer, Inc.,
Groton, Connecticut 06340
Received J uly 6, 1999
A number of reagents are routinely used to cleave
primary alkyl aryl ethers1 such as BBr3,2 EtSNa/DMF,3
TMSI,4 py-HCl,5 and HBr/AcOH.6,7 Boron-based reagents
are particularly versatile for this transformation, as the
Lewis acidity of the boron center and the nucleophilic
nature of the ligands can be effectively manipulated (e.g.,
2-bromo-1,3,2-benzodioxaborole,8 9-Br-BBN,9and Me2-
BBr10). We report herein that a mixture of BCl3 and
anhydrous n-Bu4NI is a powerful reagent combination
for the facile cleavage of primary alkyl aryl ethers at low
to ambient temperatures.11 Boron trichloride alone does
not remove isolated aryl methyl groups at low temper-
atures,12 although it is extremely effective when chelation
is possible.13 With n-Bu4NI present (1.1 equiv), however,
BCl3 reactivity toward primary alkyl aryl ethers is
greatly enhanced. The resulting combination reagent
system is mild, generally applicable, and operationally
simple, and it can provide results superior to those of
BBr3 for the cleavage of numerous substrates. Further-
Using our modified BCl3/n-Bu4NI procedure, n-Bu4NI
(2.5 equiv) and 3,5-dimethoxyfluorobenzene (1) in
CH2Cl2 (0.2 M) are treated with BCl3 (2.5 equiv, 1 M
CH2Cl2) at -78 °C and then warmed to 0 °C. Complete
conversion to 5-fluororesorcinol (2) occurs in 2 h (77%
isolated yield).
To determine the generality of the method, we have
studied the dealkylation of a variety of substrates. In a
typical experiment, a 0.2-0.5 M solution of substrate and
n-Bu4NI15 (1.1 equiv) in anhydrous CH2Cl2 is treated with
BCl3 at -78 °C (1 M in CH2Cl2). The reaction solution is
monitored and then treated as indicated (see Table 1 and
the Experimental Section for equivalents, temperature,
and time). Aqueous workup and chromatography provide
the target phenols.
Methyl-, ethyl-, and benzylnaphthyl ethers are readily
cleaved (3, 4, 6, 7); however, isopropyl naphthyl ether is
stable under these conditions (5).13f Severe steric con-
straints also retard the reaction (8 vs 9). Selective
cleavage of benzyl ethers in the presence of methyl ethers
is achieved (10), and methylenedioxy groups are readily
cleaved at -78 °C (11).13d
(1) (a) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic
Synthesis, 2nd ed.; J ohn Wiley & Sons: New York, 1991; Chapter 3.
(b) Bhatt, M. V.; Kulkarni, S. U. Synthesis 1983, 249. (c) Ranu, B. C.;
Bhar, S. Org. Prep. Proced. Int. 1996, 28, 371-409.
(2) (a) Benton, F. L.; Dillon, T. E. J . Am. Chem. Soc. 1942, 64, 1128.
(b) McCombie, J . F. W.; Watts, M. L. Chem. Ind. (London) 1963, 1658.
(c) McCombie, J . F. W.; Watts, M. L.; West, D. E. Tetrahedron 1968,
24, 2289. (d) J effery, B. Synth. Commun. 1979, 9, 407.
(3) (a) Feutrill, G. I.; Mirrington, R. N. Tetrahedron Lett. 1970, 1327.
(b) Feutrill, G. I.; Mirrington, R. N. Aust. J . Chem. 1972, 25, 1719. (c)
Kende, A. S.; Rizzi, J . P. Tetrahedron Lett. 1981, 22, 1779.
(4) J ung, M. E.; Lyster, M. A. J . Org. Chem. 1977, 42, 3761.
(5) Gates, M.; Tschudi, G. J . Am. Chem. Soc. 1956, 78, 1380.
(6) Kawasaki, I.; Matsuda, K.; Kaneko, T. Bull. Chem. Soc. J pn.
1971, 44, 1986.
(7) New methods continue to be developed. For isopropyl ethers,
see: (a) Banwell, M. G.; Flynn, B. L.; Stewart, S. G. J . Org. Chem.
1998, 63, 9139. (b) Horie, T.; Shibata, K.; Yamashita, K.; Kawamura,
Y.; Tsukayama, M. Chem. Pharm. Bull. 1997, 45, 446. For allyl ethers,
see: (c) Kamal, A.; Laxman, E.; Rao, N. V. Tetrahedron Lett. 1999,
40, 371. (d) Taniguchi, T.; Ogasawara, K. Angew. Chem., Int. Ed. 1998,
37, 1136. For an effective alternative acidic methoxyl cleavage, see:
(e) Fujii, N.; Irie, H.; Yajima, H. J . Chem. Soc., Perkin Trans. 1 1977,
2288.
Other functionalities are well tolerated16 but may alter
the required BCl3/substrate stoichiometry. For instance,
(13) (a) Dean, F. M.; Goodchild, J .; Houghton, L. E.; Martin, J . A.;
Morton, R. B.; Parton, B.; Price, A. W.; Somvichien, N. Tetrahedon
Lett. 1966, 4153. (b) Nagaoka, H.; Schmid, G.; Iio, H.; Kishi, Y.
Tetrahedron Lett. 1981, 22, 899. (c) Dolson, M. G.; Chenard, B. L.;
Swenton, J . S. J . Am. Chem. Soc. 1981, 103, 5263. (d) Swenton, J . S.;
Anderson, D. K.; J ackson, D. K.; Narasimhan, L. J . Org. Chem. 1981,
46, 4825. (e) Teital, S.; O’Brien, J .; Brossi, A. J . Org. Chem. 1972, 37,
3368. For the cleavage of isopropyl ethers flanked by ethers, see: (f)
Sala, T.; Sargent, M. V. J . Chem. Soc., Perkin Trans. 1 1979, 2593.
(14) Sun, W.-C.; Gee, K. R.; Klaubert, D. H.; Haugland, R. P. J . Org.
Chem. 1997, 62, 6469.
(8) (a) Boeckman, R. K., J r.; Potenza, J . C. Tetrahedron Lett. 1985,
26, 1411. (b) King, P. F.; Stroud, S. G. Tetrahedron Lett. 1985, 26, 1415.
(9) Bhatt, M. V. J . Organomet. Chem. 1978, 156, 221.
(10) (a) Guindon, Y.; Yoakim, C.; Morton, H. E. Tetrahedron Lett.
1983, 24, 2969. (b) Guindon, Y.; Morton, H. E.; Yoakim, C. Tetrahedron
Lett. 1983, 24, 3969.
(11) Previously, this approach has been exploited by combining
crown ethers and alkali-metal iodides with BBr3. For aliphatic ethers,
see: (a) Niwa, H.; Hida, T.; Yamada, K. Tetrahedron Lett. 1981, 22,
4239. For a similar combination method employed in the selective
dealkylation of alkyl ethers, see: (b) Node, M.; Kamimoto, T.; Nishide,
K.; Fujita, E.; Fuji, K. Bull. Inst. Chem. Res. 1992, 70, 308.
(12) (a) Ramser, H.; Wiberg, E. Chem. Ber. 1930, 63, 1136. (b)
Gerrard, W.; Lappert, M. F. J . Chem. Soc. 1952, 1486 and reference
cited in ref 1b.
(15) Fresh commercial anhydrous n-Bu4NI is acceptable in most
instances and should be handled under an inert atmosphere. The
reagent performance diminishes with improper handling and storage.
Sensitive substrates may require the recrystallization of n-Bu4NI from
hot toluene to provide strictly anhydrous material. See: (a) Perrin, D.
D.; Armarego, W. L. F. Purification of Laboratory Chemicals, 3rd ed.;
Permagon Press Ltd.: Oxford, 1988; p 280, (b) Blau, R. J .; Espenson,
J . H. J . Am. Chem. Soc. 1986, 108, 1962.
(16) Unsatisfactory performance of this reagent combination is
observed with 1-NH-indoles, nitro aromatics (partial nitro reduction),
and some conjugated derivatives, such as 6-methoxytetralone (20,
methyl stable to conditions, see text). Peculiar results have been
observed with 2-bromo-1,3,5-trimethoxybenzene; debromination occurs,
instead of ether cleavage and, after workup, provides the parent 1,3,5-
trimethoxybenzene.
10.1021/jo9910740 CCC: $18.00 © 1999 American Chemical Society
Published on Web 11/25/1999