1
12
J Biomol NMR (2016) 64:103–113
Bertini I, Luchinat C (1996) NMR of paramagnetic substances. Coord
Chem Rev 150:1–243
La Mar GN, Horrocks WD, Holm RH (1973) NMR of paramagnetic
molecules. Elsevier, Amsterdam
Bertini I, Luchinat C (1999) New applications of paramagnetic NMR
in chemical biology. Curr Opin Chem Biol 3:145–151
Bertini I, Turano P, Vila AJ (1993) Nuclear magnetic resonance of
metalloproteins. Chem Rev 93:2833–2932
Bertini I, Luchinat C, Parigi G (2002) Magnetic susceptibility in
paramagnetic NMR. Prog NMR Spectr 40:249–273
Lee HS, Spraggon G, Schultz PG, Wang F (2009) Genetic incorpo-
ration of a metal-ion chelating amino acid into proteins as a
biophysical probe. J Am Chem Soc 131:2481–2483
Li QF, Yang Y, Maleckis A, Otting G, Su XC (2012) Thiol-ene
reaction: a versatile tool in site-specific labelling of proteins with
chemically inert tags for paramagnetic NMR. Chem Commun
48:2704–2706
Liu X, Li J, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J (2013)
Significant expansion of the fluorescent protein chromophore
through the genetic incorporation of a metal-chelating unnatural
amino acid. Angew Chem Int Ed Engl 52:4805–4809
Liu WM, Overhand M, Ubbink M (2014) The application of
paramagnetic lanthanoid ions in NMR spectroscopy on proteins.
Coord Chem Rev 273–274:2–12
Loh CT, Graham B, Abdelkader EH, Tuck KL, Otting G (2015)
Generation of pseudocontact shifts in proteins with lanthanides
using small ‘‘clickable’’ nitrilotriacetic acid and iminodiacetic
acid tags. Chem Eur J 21:5084–5092
Ma FH, Chen JL, Li QF, Zuo HH, Huang F, Su XC (2014) Kinetic
assay of the Michael addition-like thiol-ene reaction and insight
into protein bioconjugation. Chem Asian J 9:1808–1816
Maltsev AS, Grishaev A, Roche J, Zasloff M, Bax A (2014) Improved
cross validation of a static ubiquitin structure derived from high
precision residual dipolar couplings measured in a drug-based
liquid crystalline phase. J Am Chem Soc 136:3752–3755
Man B, Su XC, Liang H, Simonsen S, Huber T, Messerle BA, Otting
G (2010) 3-Mercapto-2,6-pyridinedicarboxylic acid: a small
lanthanide-binding tag for protein studies by NMR spectroscopy.
Chem Eur J 16:3827–3832
Marley J, Lu M, Bracken C (2001) A method for efficient isotopic
labeling of recombinant proteins. J Biomol NMR 20:71–75
Martorana A, Yang Y, Zhao Y, Li QF, Su XC, Goldfarb D (2015)
Mn(II) tags for DEER distance measurements in proteins via C–
S attachment. Dalton Trans 44:20812–20816
Bertini I, Luchinat C, Parigi G, Pierattelli R (2005) NMR spec-
troscopy of paramagnetic metalloproteins. Chembiochem
6
:1536–1549
Bertini I, Luchinat C, Parigi G, Pierattelli R (2008) Perspectives in
paramagnetic NMR of metalloproteins. Dalton 3782–3790
Cao C, Chen JL, Yang Y, Huang F, Otting G, Su XC (2014) Selective
1
5
N-labeling of the side-chain amide groups of asparagine and
glutamine for applications in paramagnetic NMR spectroscopy.
J Biomol NMR 59:251–261
Clore GM, Iwahara J (2009) Theory, practice, and applications of
paramagnetic relaxation enhancement for the characterization of
transient low-population states of biological macromolecules and
their complexes. Chem Rev 109:4108–4139
Donaire A, Salgado J, Moratal JM (1998) Determination of the magnetic
1
axes of cobalt(II) and nickel(II) azurins from H NMR data:
influence of the metal and axial ligands on the origin of magnetic
anisotropy in blue copper proteins. Biochemistry 37:8659–8673
Dosset P, Hus JC, Marion D, Blackledge M (2001) A novel
interactive tool for rigid-body modeling of multi-domain
macromolecules using residual dipolar couplings. J Biomol
NMR 20:223–231
Falini G, Fermani S, Tosi G, Arnesano F, Natile G (2008) Structural
probing of Zn(II), Cd(II) and Hg(II) binding to human ubiquitin.
Chem Commun 5980–5962
Geraldes CF (1993) Lanthanide shift reagents. Methods Enzymol
2
27:43–78
Geraldes CF, Luchinat C (2003) Lanthanides as shift and relaxation
agents in elucidating the structure of proteins and nucleic acids.
Met Ions Biol Syst 40:513–588
Nguyen THD, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting
G (2011) Generation of pseudocontact shifts in protein NMR
spectra with a genetically encoded cobalt(II)-binding amino acid.
Angew Chem Int Ed 50:692–694
Otting G (2008) Prospects for the lanthanides in structural biology by
NMR. J Biomol NMR 42:1–9
Gochin M (1998) Nuclear magnetic resonance characterization of a
paramagnetic DNA-drug complex with high spin cobalt; assign-
1
31
ment of the H and P NMR spectra, and determination of
electronic, spectroscopic and molecular properties. J Biomol
NMR 12:243–257
Huang F, Pei YY, Zuo HH, Chen JL, Yang Y, Su XC (2013)
Bioconjugation of proteins with a paramagnetic NMR and
fluorescent tag. Chem Eur J 19:17141–17149
Jensen MR, Led JJ (2006) Metal–protein interactions: structure
information from Ni(II)-induced pseudocontact shifts in a native
nonmetalloprotein. Biochemistry 45:8782–8787
Otting G (2010) Protein NMR using paramagnetic ions. Annu Rev
Biophys 39:387–405
Park SH, Wang VS, Radoicic J, De Angelis AA, Berkamp S, Opella
SJ (2015) Paramagnetic relaxation enhancement of membrane
proteins by incorporation of the metal-chelating unnatural amino
acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA).
J Biomol NMR 61:185–196
Petitjean A, Kyritsakas N, Lehn JM (2005) Ion-triggered multistate
molecular switching device based on regioselective coordina-
tion-controlled ion binding. Chem Eur J 11:6818–6828
Pintacuda G, John M, Su XC, Otting G (2007) NMR structure
determination of protein–ligand complexes by lanthanide label-
ling. Acc Chem Res 40:206–212
Jensen MR, Lauritzen C, Dahl SW, Pedersen J, Led JJ (2004) Binding
studied by
2?
ability of a HHP-tagged protein towards Ni
paramagnetic NMR relaxation: the possibility of obtaining
long-range structure information. J Biomol NMR 29:175–185
0
Jia X, Maleckis A, Huber T, Otting G (2011) 4,4 -Dithiobisdipicolinic
acid: a small and convenient lanthanide binding tag for protein
NMR spectroscopy. Chem Eur J 17:6830–6836
Johnston WD, Freiser H (1952) Structure and behavior of organic
analytical reagents. III. Stability of chelates of 8-hydroxyquino-
line and analogous reagents. J Am Chem Soc 74:5239–5242
Jones CE, Klewpatinond M, Abdelraheim SR, Brown DR, Viles JH
Qi A, Gross A, Jeschke G, Godt A, Drescher M (2014) Gd(III)-
PyMTA label is suitable for in-cell EPR. J Am Chem Soc
136:15366–15378
Ramage R, Green J, Muir TW, Ogunjobi OM, Love S, Shaw K (1994)
Synthetic, structural and biological studies of the ubiquitin
system: chemically synthesized and native ubiquitin fold into
identical three-dimensional structures. Biochem J 299:151–158
Rinaldelli M, Carlon A, Ravera E, Parigi G, Luchinat C (2014)
FANTEN: a new web-based interface for the analysis of
(
2005) Probing copper binding to the prion protein using
1
diamagnetic nickel and H NMR: the unstructured N terminus
facilitates the coordination of six copper ions at physiological
concentrations. J Mol Biol 346:1393–1407
Koehler J, Meiler J (2011) Expanding the utility of NMR restraints
with paramagnetic compounds: background and practical
aspects. Prog NMR Spectr 59:360–389
magnetic anisotropy-induced NMR data.
61:21–34
J Biomol NMR
1
23