ChemCatChem
10.1002/cctc.201701984
FULL PAPER
Cheetham, T. Friščić, Angew. Chemie - Int. Ed. 2010, 49, 9640–
μL of PNPB (0.02 M in 2-propanol) solution and 200 μL of 2-
propanol. The activity of immobilised lipases was measured by
adding 5 mg of lipase@ZIF-8 samples to 5 mL of 0.1 M
phosphate buffer pH 7, 500 μL of PNPB solution and 500 μL of
9643.
[
[
19]
20]
H. Y. Cho, J. Kim, S. N. Kim, W. S. Ahn, Microporous Mesoporous
Mater. 2013, 169, 180–184.
Q. Bao, Y. Lou, T. Xing, J. Chen, Inorg. Chem. Commun. 2013, 37,
170–173.
2
-propanol. The (free and immobilised) lipases catalyse the
[21]
K. Liang, C. J. Coghlan, S. G. Bell, C. Doonan, P. Falcaro, Chem.
Commun. 2016, 52, 473–476.
J. Cui, Y. Feng, T. Lin, Z. Tan, C. Zhong, S. Jia, ACS Appl. Mater.
Interfaces 2017, 9, 10587–10594.
E. Gkaniatsou, C. Sicard, R. Ricoux, J.-P. Mahy, N. Steunou, C.
Serre, Mater. Horiz. 2017, 4, 55–63.
K. Liang, R. Ricco, C. M. Doherty, M. J. Styles, S. Bell, N. Kirby, S.
Mudie, D. Haylock, A. J. Hill, C. J. Doonan, et al., Nat. Commun.
formation of p-nitrophenol which was quantified at =400 nm
[
[
[
22]
23]
24]
-1
-1
(
molar extinction coefficient of p-nitrophenol, =9396.1 M cm )
at room temperature. The lipase activity (mol p-nitrophenol ×
-1
min ) was corrected by subtracting the amount of p-nitrophenol
formed in the absence of lipases. Storage and recycling
stabilities were carried out by means of the PNPB assay, as
described above. For storage tests, the wet biocatalyst was
stored at 4°C and dried under vacuum the day before the activity
measurements. For recycling tests, the used biocatalyst (5 mg)
was recovered by centrifugation and washed with 1 mL of 0.1 M
phosphate buffer pH 7 before the addition of the fresh substrate
solution. All activity and stability measurements were carried out
at least in triplicate.
2015, 6, 7240.
[
[
25]
26]
X. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Chem. Commun. 2015, 51,
13408–13411.
K. Kida, M. Okita, K. Fujita, S. Tanaka, Y. Miyake, CrystEngComm
2013, 15, 1794.
[27]
W. Shuai, R. K. Das, M. Naghdi, S. K. Brar, M. Verma, Biotechnol.
Appl. Biochem. 2017, 64, 496–508.
Z. Amini, Z. Ilham, H. C. Ong, H. Mazaheri, W. H. Chen, Energy
Convers. Manag. 2017, 141, 339–353.
[
[
[
[
28]
29]
30]
31]
M. L. Verma, M. Puri, C. J. Barrow, Crit. Rev. Biotechnol. 2014,
8551, 1–12.
A. Salis, M. S. Bhattacharyya, M. Monduzzi, V. Solinas, J. Mol.
Catal. B Enzym. 2009, 57, 262–269.
A. Salis, M. Pinna, M. Monduzzi, V. Solinas, J. Mol. Catal. B Enzym.
2008, 54, 19–26.
Acknowledgements
[32]
J. Trbojevic Ivic, D. Velickovic, A. Dimitrijevic, D. Bezbradica, V.
Dragacevic, M. Gavrovic Jankulovic, N. Milosavic, J. Sci. Food Agric.
2
016, 4281–4287.
AS thanks FIR 2017 and Fondazione di Sardegna and Regione
Autonoma Sardegna (F72F16003070002) and MIUR (FFABR
[33]
P. Choudhury, B. Bhunia, Biopharm J. 2015, 1, 41–47.
W.-L. Liu, N.-S. Yang, Y.-T. Chen, S. Lirio, C.-Y. Wu, C.-H. Lin, H.-Y.
Huang, Chem. - A Eur. J. 2015, 21, 115–119.
Y. Cao, Z. Wu, T. Wang, Y. Xiao, Q. Huo, Y. Liu, Dalt. Trans. 2016,
45, 6998–7003.
S. Jung, Y. Kim, S.-J. Kim, T.-H. Kwon, S. Huh, S. Park, Chem.
Commun. (Camb). 2011, 47, 2904–2906.
V. Gascón, C. Carucci, M. B. Jiménez, R. M. Blanco, M. Sánchez-
Sánchez, E. Magner, ChemCatChem 2017, 9, 1182–1186.
H. He, H. Han, H. Shi, Y. Tian, F. Sun, Y. Song, Q. Li, G. Zhu, ACS
Appl. Mater. Interfaces 2016, 8, 24517–24524.
[
[
[
34]
35]
36]
2017) for financial support. FP is grateful to the "Agenzia delle
Dogane e dei Monopoli" for funding her PhD. Synthesis and
Solid State Pharmaceutical Centre (SSPC), funded by Science
Foundation Ireland (SFI) under grant 12/RC/2275 is thanked for
financial support. This work was also supported by the Iran
National Science Foundation: INSF (Grant no. 93043395).
[37]
[
[
[
[
[
[
38]
39]
40]
41]
42]
43]
L.-Z. Cheong, Y. Wei, H. Wang, Z. Wang, X. Su, C. Shen, J.
Nanoparticle Res. 2017, 19, 280.
J. Shi, X. Wang, S. Zhang, L. Tang, Z. Jiang, J. Mater. Chem. B
Keywords: Lipase•encapsulation•biocatalysis•ZIF 8•MOF
2
016, 4, 2654–2661.
F. Lyu, Y. Zhang, R. N. Zare, J. Ge, Z. Liu, Nano Lett. 2014, 14,
761–5765.
J. Huo, J. Aguilera-Sigalat, S. El-Hankari, D. Bradshaw, Chem. Sci.
015, 6, 1938–1943.
[
[
[
[
1]
2]
3]
4]
S. Jemli, D. Ayadi-Zouari, H. Ben Hlima, S. Bejar, Crit. Rev.
Biotechnol. 2016, 36, 246–258.
R. DiCosimo, J. McAuliffe, A. J. Poulose, G. Bohlmann, Chem. Soc.
Rev. 2013, 42, 6437.
J. M. Blamey, F. Fischer, H.-P. Meyer, F. Sarmiento, M. Zinn, in
Biotechnol. Microb. Enzym., Elsevier, 2017, pp. 347–403.
I. Eş, J. D. G. Vieira, A. C. Amaral, Appl. Microbiol. Biotechnol. 2015,
5
2
A. M. Brzozowski, U. Derewenda, Z. S. Derewenda, G. G. Dodson,
D. M. Lawson, J. P. Turkenburg, F. Bjorkling, B. Huge-Jensen, S. A.
Patkar, L. Thim, Nature 1991, 351, 491–494.
[
[
[
44]
45]
46]
M. Adamczak, W. Bednarski, Process Biochem. 2004, 39, 1347–
99, 2065–2082.
1361.
[
[
[
5]
6]
7]
E. Magner, Chem. Soc. Rev. 2013, 42, 6213.
C. Angkawidjaja, D. ju You, H. Matsumura, K. Kuwahara, Y. Koga,
K. Takano, S. Kanaya, FEBS Lett. 2007, 581, 5060–5064.
G. Fernández-Lorente, J. M. Palomo, M. Fuentes, C. Mateo, J. M.
Guisán, R. Fernández-Lafuente, Biotechnol. Bioeng. 2003, 82, 232–
M. Hartmann, X. Kostrov, Chem. Soc. Rev. 2013, 42, 6277.
N. Carlsson, H. Gustafsson, C. Thörn, L. Olsson, K. Holmberg, B.
Åkerman, Adv. Colloid Interface Sci. 2014, 205, 339–360.
A. Salis, L. Medda, F. Cugia, M. Monduzzi, Colloids Surf. B.
Biointerfaces 2016, 137, 77–90.
[
[
8]
9]
237.
[
47]
H. Gustafsson, E. M. Johansson, A. Barrabino, M. Odén, K.
Holmberg, Colloids Surf. B. Biointerfaces 2012, 100, 22–30.
Y. Kojima, S. Shimizu, J. Biosci. Bioeng. 2003, 96, 219–226.
M. Garmroodi, M. Mohammadi, A. Ramazani, M. Ashjari, J.
Mohammadi, B. Sabour, M. Yousefi, Int. J. Biol. Macromol. 2016, 86,
M. Piras, A. Salis, M. Piludu, D. Steri, M. Monduzzi, Chem.
Commun. 2011, 47, 7338.
[
[
48]
49]
[
[
10]
11]
O. M. Yaghi, H. Li, J. Am. Chem. Soc. 1995, 117, 10401–10402.
W. Morris, C. J. Stevens, R. E. Taylor, C. Dybowski, O. M. Yaghi, M.
A. Garcia-Garibay, J. Phys. Chem. C 2012, 116, 13307–13312.
Y. Pan, Y. Liu, G. Zeng, L. Zhao, Z. Lai, Chem. Commun. 2011, 47,
208–215.
[
[
[
[
12]
13]
14]
15]
[
[
[
50]
51]
52]
A. Salis, M. F. Casula, M. S. Bhattacharyya, M. Pinna, V. Solinas, M.
Monduzzi, ChemCatChem 2010, 2, 322–329.
A. Salis, M. Pinna, M. Monduzzi, V. Solinas, J. Biotechnol. 2005,
2071.
T. D. Bennett, D. A. Keen, J. C. Tan, E. R. Barney, A. L. Goodwin, A.
K. Cheetham, Angew. Chemie - Int. Ed. 2011, 50, 3067–3071.
Y. Hu, H. Kazemian, S. Rohani, Y. Huang, Y. Song, Chem.
Commun. (Camb). 2011, 47, 12694–6.
K. S. Park, Z. Ni, A. P. Cô Té, J. Y. Choi, R. Huang, F. J. Uribe-
Romo, H. K. Chae, M. O ’keeffe, O. M. Yaghi, Proc. Natl. Acad. Sci.
U. S. A. 2006, 103, 10186.
119, 291–299.
D. W. Lewis, A. R. Ruiz-Salvador, A. Gomez, L. M. Rodriguez-
Albelo, F.-X. Coudert, B. Slater, A. K. Cheetham, C. Mellot-
Draznieks, CrystEngComm 2009, 11, 2272–2276.
D. Fairen-Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S.
Parsons, T. Dꢀren, J. Am. Chem. Soc. 2011, 133, 8900–8902.
Q. Shi, Z. Chen, Z. Song, J. Li, J. Dong, Angew. Chemie - Int. Ed.
[
[
[
53]
54]
55]
[
[
[
16]
17]
18]
S. Bhattacharjee, M.-S. Jang, H.-J. Kwon, W.-S. Ahn, Catal. Surv.
from Asia 2014, 18, 101–127.
S. K. Nune, P. K. Thallapally, A. Dohnalkova, C. Wang, J. Liu, G. J.
Exarhos, Chem. Commun. 2010, 46, 4878–80.
2011, 50, 672–675.
V. Gascón, E. Castro-Miguel, M. Díaz-García, R. M. Blanco, M.
Sanchez-Sanchez, J. Chem. Technol. Biotechnol. 2017, 92, 2583–
P. J. Beldon, L. Fábián, R. S. Stein, A. Thirumurugan, A. K.
This article is protected by copyright. All rights reserved.