6908
C. R. Woods et al. / Bioorg. Med. Chem. Lett. 17 (2007) 6905–6909
Table 1. Microsomal stabilitya and potencyb for aryl sulfonamides 4a–t
Supplementary data
HLMa
RLMa
pKIb
Characterization data for compounds 4a–t. Supple-
mentary data associated with this article can be found,
2
0c
77
44
3
29
78
49
25
9
7.6
6.3
6.2
5.7
5.6
5.3
5.3
5.1
5.4
5.3
5.5
6.1
5.3
5.2
5.8
5.1
5.5
5.3
6.3
5.8
5.1
4a
4b
4c
4d
4e
4f
41
7
100
23
66
47
0c
13
0c
5
0c
63
2
References and notes
4g
4h
4i
1. Vakil, N. Aliment. Pharmacol. Ther. 2004, 19, 1041;
Lehmann, F. S.; Hildebrand, P.; Beglinger, C. Drugs
2003, 63, 1785.
4j
39
68
87
0c
4k
4l
2. Reubi, J. C.; Schaer, J. C.; Waser, B. Cancer Res. 1997, 57,
1377; Konturek, P. C.; Nikiforuk, A.; Kania, J.; Raithel,
M.; Hahn, E. G.; Muehldorfer, S. M. Dig. Dis. Sci. 2004,
49, 1075; Colucci, R.; Blandizzi, C.; Tanini, M.; Vassalle,
C.; Breschi, M. C.; Del Tacca, M. Br. J. Pharmacol. 2005,
144, 338; Herranz, R. Med. Res. Rev. 2003, 23, 559.
3. Lin, J. H.; Storey, D. E.; Chen, I. W.; Xu, X. Biopharm.
Drug Dispos. 1996, 17, 1; McDonald, I. M. Expert Opin.
Ther. Pat. 2001, 11, 445.
89
0c
3
0c
23
10
0c
7
4m
4n
4o
4p
4q
4r
4s
4t
37
0c
19
100
11
100
30
85
4. Allison, B. D.; Phuong, V. K.; McAtee, L. C.; Rosen, M.;
Morton, M.; Prendergast, C.; Barrett, T.; Lagaud, G.;
Freedman, J.; Li, L.; Wu, X.; Venkatesan, H.; Pippel, M.;
Woods, C.; Rizzolio, M. C.; Hack, M.; Hoey, K.; Deng,
X.; King, C.; Shankley, N. P.; Rabinowitz, M. H. J. Med.
Chem. 2006, 49, 6371.
a Human liver microsome (HLM) and rat liver microsome (RLM)
stabilities reported as percent of compound remaining after 30 min.
b Negative logarithm of the antagonist equilibrium dissociation con-
stant calculated from the concentration required to displace 50% 125I-
CCK-8S (pIC50) by the method of Cheng and Prussoff. All values are
0.3 log units unless otherwise stated.
5. For chemical changes related to the modification of the
piperidine amide region, see Ref. 5.
c Compound concentration was below detection limits.
6. Deng, X.; Stefanick, S.; Pippel, M. C. W.; Mani, N. S.
Org. Process Res. Dev. 2006, 10, 1287.
7. Ley, S. V.; Ladlow, M.; Vickerstaffe, E. Exploiting Chem.
Divers. Drug Discov. 2006, 3; Booth, R. J.; Hodges, J. C.
Acc. Chem. Res. 1999, 32, 18.
The relative stability toward CYP 450 oxidation of the
compounds was examined in the presence of human
and rat liver microsomes (Table 1).23 Several of the com-
pounds showed good stability after 30 min. This was a
vast improvement over compound 2 under the same
conditions which showed rapid degradation.
8. Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996,
118, 2574.
9. Organ, M. G.; Dixon, C. E.; Mayhew, D.; Parks, D. J.;
Arvanitis, E. A. Comb. Chem. High Throughput Screening
2002, 5, 211; Flynn, D. L.; Devraj, R. V.; Naing, W.;
Parlow, J. J.; Weidner, J. J.; Yang, S. Med. Chem. Res.
1998, 8, 219.
10. Cheng, S.; Comer, D. D.; Williams, J. P.; Myers, P. L.;
Boger, D. L. J. Am. Chem. Soc. 1996, 118, 2567; Cheng,
S.; Tarby, C. M.; Comer, D. D.; Williams, J. P.; Caporale,
L. H.; Myers, P. L.; Boger, D. L. Bioorg. Med. Chem.
1996, 4, 727; Armstrong, R. W.; Brown, S. D.; Keating, T.
A.; Tempest, P. A. J. Comb. Chem. 1997, 153.
11. Bapna, A.; Vickerstaffe, E.; Warrington, B. H.; Ladlow,
M.; Fan, T.-P. D.; Ley, S. V. Org. Biomol. Chem. 2004, 2,
611.
Although we were able to achieve improved stabilities
by this measure, receptor affinity values of the analogs
(Table 1) were lower than for compound 2. The best
of the analogs from the library synthesis, 4a, was over
a full log unit lower relative to the direct benzothiadiaz-
ole analog 2. Subsequently, in a second stage of this
work, we undertook a chemical strategy to build struc-
turally similar benzothiadiazole-like replacements to
determine the requisite pharmacophore and modifiable
regions of the system using X-ray crystallography,
NMR, and computational studies and are subjects of fu-
ture disclosures from our laboratories.24
12. Xu, W.; Mohan, R.; Morrissey, M. M. Tetrahedron Lett.
1997, 38, 7337.
13. Liu, Y.-S.; Zhao, C.; Bergbreiter, D. E.; Romo, D. J. Org.
Chem. 1998, 63, 3471.
14. Seeberger, S.; Griffin, R. J.; Hardcastle, I. R.; Golding, B.
T. Org. Biomol. Chem. 2007, 5, 132.
15. Boisnard, S.; Chastanet, J.; Zhu, J. Tetrahedron Lett.
1999, 40, 7469; Hardcastle, I. R.; Moreno Barber, A.;
Marriott, J. H.; Jarman, M. Tetrahedron Lett. 2001, 42,
1363; Kulkarni, B. A.; Ganesan, A. Angew. Chem., Int.
Ed. Engl. 1997, 36, 2454; Parlow, J. J.; Case, B. L.; South,
M. S. Tetrahedron 1999, 55, 6785; Shuker, A. J.; Siegel, M.
G.; Matthews, D. P.; Weigel, L. O. Tetrahedron Lett. 1997,
38, 6149.
In summary, we have developed an efficient and rapid
synthetic methodology for the preparation of >100
anthranilic sulfonamides for our ongoing medicinal
chemistry efforts. This methodology has produced a
small library of compounds allowing us to refine our
pharmacophore model for CCK-2 receptor binding of
small molecule antagonists.
Acknowledgment
16. Griffiths-Jones, C. M.; Hopkin, M. D.; Jonsson, D.; Ley,
S. V.; Tapolczay, D. J.; Vickerstaffe, E.; Ladlow, M.
J. Comb. Chem. 2007, 9, 422.
We thank Jiejun Wu for his assistance with the spectral
analysis of these compounds.