ACCEPTED MANUSCRIPT
1
2
nanofibers on initial cell adhesion and cell morphology, Colloids and Surfaces B: Biointerfaces.
113 (2014) 101–106.
3
[4]
L.S. Dolci, S.D. Quiroga, M. Gherardi, R. Laurita, A. Liguori, P. Sanibondi, et al., Carboxyl
Surface Functionalization of Poly( <scp>L</scp> -lactic acid) Electrospun Nanofibers through
Atmospheric Non-Thermal Plasma Affects Fibroblast Morphology, Plasma Processes and
Polymers. 11 (2014) 203–213.
4
5
6
7
[5]
[6]
G. Wu, P. Li, H. Feng, X. Zhang, P.K. Chu, Engineering and functionalization of biomaterials
via surface modification, J. Mater. Chem. B. 3 (2015) 2024–2042.
8
9
Z. Kolská, A. Řezníčková, M. Nagyová, N. Slepičková Kasálková, P. Sajdl, P. Slepička, et al.,
Plasma activated polymers grafted with cysteamine improving surfaces cytocompatibility,
Polymer Degradation and Stability. 101 (2014) 1–9.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
[7]
[8]
S. Sarapirom, L.D. Yu, D. Boonyawan, C. Chaiwong, Effect of surface modification of
poly(lactic acid) by low-pressure ammonia plasma on adsorption of human serum albumin,
Applied Surface Science. 310 (2014) 42–50.
S. Rimpelová, L. Peterková, N.S. Kasálková, P. Slepička, V. Švorčík, T. Ruml, Surface
Modification of Biodegradable Poly(L -Lactic Acid) by Argon Plasma: Fibroblasts and
Keratinocytes in the Spotlight, Plasma Processes and Polymers. 11 (2014) 1057–1067.
W.W. Gerhardt, D.E. Noga, K.I. Hardcastle, A.J. García, D.M. Collard, M. Weck, Functional
lactide monomers: methodology and polymerization., Biomacromolecules. 7 (2006) 1735–42.
M. Trollsås, V.Y. Lee, D. Mecerreyes, P. Löwenhielm, M. Möller, R.D. Miller, et al.,
Hydrophilic aliphatic polyesters: design, synthesis, and ring-opening polymerization of
functional cyclic esters, Macromolecules. 33 (2000) 4619–4627.
[9]
[10]
[11]
[12]
[13]
[14]
A.M. Fischer, R. Thiermann, M. Maskos, H. Frey, One-pot synthesis of poly(l-lactide)
multi-arm star copolymers based on a polyester polyol macroinitiator, Polymer. 54 (2013)
1993–2000.
S. Daniel P., F. Kazuki, C. Daniel J., N. Alshakim, F. Masaki, Y. Manabu, et al., A Simple and
Efficient Synthesis of Functionalized Cyclic Carbonate Monomers Using a Versatile
Pentafluorophenyl Ester Intermediate, J. Am. Chem. Soc. 132 (2010) 14724–14726.
J. Undin, P. Olsén, J. Godfrey, K. Odelius, A.-C. Albertsson, Controlled copolymerization of
the non-homopolymerizable, functional monomer α-bromo-γ-butyrolactone via selective
organocatalysis, Polymer. 87 (2015).
W. Chen, H. Yang, R. Wang, R. Cheng, F. Meng, W. Wei, et al., Versatile synthesis of
functional biodegradable polymers by combining ring-opening polymerization and
postpolymerization modification via michael-type addition reaction, Macromolecules. 43 (2010)
201–207.
[15]
[16]
J. Xu, F. Prifti, J. Song, A Versatile Monomer for Preparing Well-Defined Functional
Polycarbonates and Poly(ester-carbonates)., Macromolecules. 44 (2011) 2660–2667.
S. El Habnouni, V. Darcos, J. Coudane, Synthesis and Ring Opening Polymerization of a New
Functional Lactone, α-Iodo-ε-caprolactone: A Novel Route to Functionalized Aliphatic
Polyesters., Macromolecular Rapid Communications. 30 (2009) 165–9.
J. Mindemark, T. Bowden, Synthesis and polymerization of alkyl halide-functional cyclic
carbonates, Polymer. 52 (2011) 5716–5722.
[17]
[18]
B. Parrish, R.B. Breitenkamp, T. Emrick, PEG- and Peptide-Grafted Aliphatic Polyesters by
Click Chemistry PEG- and Peptide-Grafted Aliphatic Polyesters by Click Chemistry,