492
S. N. Georgiades, N. Rizeq
Letter
Synlett
A 1,3-dipolar cycloaddition carried out on the two alde-
hyde moieties of 7 by the reagent tosylmethyl isocyanide
(TosMIC), upon its deprotonation by K2CO3 in MeOH heated
to reflux (Van Leusen reaction),20 assured an efficient con-
version of 7 into the tris-oxazole system 821 (77% yield).
Tris-oxazole adducts with this pattern of oxazole connec-
tivity to a central pyridine ring represent a new family of
compounds and could prove to be useful synthetic interme-
diates in many applications, including biologicals and mate-
rials.
In our case, the two terminal oxazoles allowed for yet
another C–C cross-coupling step, under the same condi-
tions as the previous one,7 but this time with 2-bromopyri-
dine (9) as the coupling partner, to introduce one additional
pyridine ring on each of the two termini and extend the re-
spective branches. The use of excess 2-bromopyridine (3
equiv) was key to driving the valuable intermediate 8 to the
corresponding bis-pyridinylated product 1022 (54% yield).
We anticipate that the same reaction can be applied to
modified/substituted 2-bromopyridines and could lead to
even more extended oligomers with the same architecture,
some of which would make good candidates for targeting
G-quadruplexes.
M.; Shin-ya, K.; Takahashi, T. Org. Lett. 2006, 8, 4165. (e) Minhas,
G. S.; Pilch, D. S.; Kerrigan, J. E.; LaVoie, E. J.; Rice, J. E. Bioorg.
Med. Chem. Lett. 2006, 16, 3891. (f) Tera, M.; Ishizuka, H.; Takagi,
M.; Suganuma, M.; Shin-ya, K.; Nagasawa, K. Angew. Chem. Int.
Ed. 2008, 47, 5557. (g) Rzuczek, S. G.; Pilch, D. S.; LaVoie, E. J.;
Rice, J. E. Bioorg. Med. Chem. Lett. 2008, 18, 913.
(4) Rzuczek, S. G.; Pilch, D. S.; Liu, A.; Liu, L.; LaVoie, E. J.; Rice, J. E.
J. Med. Chem. 2010, 53, 3632.
(5) (a) Huppert, J. L.; Balasubramanian, S. Nucleic Acids Res. 2005,
33, 2908. (b) Todd, A. K. Methods 2007, 43, 246. (c) Todd, A. K.;
Haider, S. M.; Parkinson, G. N.; Neidle, S. Nucleic Acids Res. 2007,
35, 5799. (d) Huppert, J. L.; Balasubramanian, S. Nucleic Acids
Res. 2007, 35, 406.
(6) Du, Z.; Zhao, Y.; Li, N. Genome Res. 2008, 18, 233.
(7) Hamon, F.; Largy, E.; Guédin-Beaurepaire, A.; Rouchon-Dagois,
M.; Sidibe, A.; Monchaud, D.; Mergny, J.-L.; Riou, J.-F.; Nguyen,
C.-H.; Teulade-Fichou, M.-P. Angew. Chem. Int. Ed. 2011, 50,
8745.
(8) Petenzi, M.; Verga, D.; Largy, E.; Hamon, F.; Doria, F.; Teulade-
Fichou, M.-P.; Guédin, A.; Mergny, J.-L.; Mella, M.; Freccero, M.
Chem. Eur. J. 2012, 18, 14487.
(9) Data for compound 2: 1H NMR (CDCl3): δ = 1.41 (t, J = 7.1 Hz, 6
H), 4.46 (q, J = 7.1 Hz, 4 H), 7.35 (s, 2 H). 13C NMR (CDCl3 + trace
DMSO-d6): δ = 13.6, 61.6, 115.6, 148.1, 163.9, 167.1. MS (ESI):
m/z = 238.08 (calcd 238.07 [M – H]–), 261.06 (calcd 261.06, [M +
Na – H]–).
(10) Cooper, C. G. F.; MacDonald, J. C.; Soto, E.; McGimpsey, W. E.
J. Am. Chem. Soc. 2004, 126, 1032.
In summary, we have described an expedient method
leading to the generation of a model propeller-like pyridyl-
oxazole compound 10, with three branches and alternating
pyridine and oxazole rings in each branch. This is a novel
architecture with potential interest for anticancer research.
Several analogues of model compound 10 are being pre-
pared in our laboratory by variations of this method, and
their evaluation for G-quadruplex binding is underway and
will be reported in due course.
(11) Data for compound 3: 1H NMR (CDCl3): δ = 1.45 (t, J = 7.2 Hz,
6 H), 4.49 (q, J = 7.2 Hz, 4 H), 8.42 (s, 2 H). 13C NMR (CDCl3): δ =
14.1, 62.7, 131.0, 134.9, 149.5, 163.5. MS (ESI): m/z = 302.01
(calcd 302.00, [M + H]+).
(12) Data for compound 4: 1H NMR (CDCl3): δ = 7.13 (t, J =7.0 Hz,
1 H), 7.55 (d, J = 7.0 Hz, 1 H), 7.61 (s, 1 H), 7.65 (t, J = 7.0 Hz,
1 H), 7.89 (s, 1 H), 8.53 (d, J = 7.0 Hz, 1 H). 13C NMR (CDCl3): δ =
119.0, 122.7, 124.5, 136.6, 146.7, 149.5, 150.7, 150.8. MS (ESI):
m/z = 147.06 (calcd 147.06, [M + H]+).
(13) Data for compound 5: 1H NMR (CDCl3): δ = 1.46 (t, J = 7.2 Hz,
6 H), 4.51 (q, J = 7.2 Hz, 4 H), 7.29 (td, J1 = 5.5 Hz, J2=2.8 Hz, 1 H),
Acknowledgment
7.80–7.82 (m, 2 H, overlapping), 7.90 (s, 1 H), 8.65 (dt, J1
=
4.7 Hz, J2 = 1.5 Hz, 1 H), 8.87 (s, 2 H). 13C NMR (CDCl3): δ = 14.1,
62.5, 119.7, 123.6, 123.8, 127.6, 136.5, 137.0, 146.2, 149.6,
150.0, 152.5, 158.0, 164.0. MS (ESI): m/z = 368.12 (calcd 368.13,
[M + H]+).
We thank the University of Cyprus for a New Faculty Startup Grant to
SNG.
(14) (a) Zificsak, C. A.; Hlasta, D. J. Tetrahedron 2004, 60, 8991.
(b) Besselièvre, F.; Mahuteau-Betzer, F.; Grierson, D. S.; Piguel,
S. J. Org. Chem. 2008, 73, 3278. (c) Besselièvre, F.; Lebrequier, S.;
Mahuteau-Betzer, F.; Piguel, S. Synthesis 2009, 3511.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
(15) (a) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Org. Lett. 2007,
9, 3433. (b) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Tetra-
hedron 2008, 64, 6876.
References and Notes
(16) Data for compound 6: 1H NMR (DMSO-d6): δ = 4.63 (d, J =
6.1 Hz, 4 H), 5.63 (t, J = 6.1 Hz, 2 H), 7.44 (t, J = 5.8 Hz, 1 H),
7.96–7.98 (m, 4 H, overlapping), 8.06 (s, 1 H), 8.69 (d, J = 5.0 Hz,
1 H). 13C NMR (DMSO-d6): δ = 64.1, 114.2, 119.9, 123.9, 127.4,
134.4, 137.6, 146.1, 150.1, 151.5, 159.7, 162.8. MS (ESI): m/z =
282.10 (calcd 282.09, [M – H]–).
(1) Shin-ya, K.; Wierzba, K.; Matsuo, K.-L.; Ohtani, T.; Yamada, Y.;
Furihata, K.; Hayakawa, Y.; Seto, H. J. Am. Chem. Soc. 2001, 123,
1262.
(2) Kim, M.-Y.; Vankayalapati, H.; Shin-ya, K.; Wierzba, K.; Hurley,
L. H. J. Am. Chem. Soc. 2002, 124, 2098.
(3) (a) Yamada, S.; Shigeno, K.; Kitagawa, K.; Okajima, S.; Asao, T.
(Taiho Pharmaceutical Co. Ltd., Sosei Co. Ltd.) 200248153, 2002;
Chem. Abstr. 2002, 137, 47050 (b) Endoh, N.; Tsuboi, K.; Kim, R.;
Yonezawa, Y.; Shin, C. Heterocycles 2003, 60, 1567. (c) Deeley, J.;
Pattenden, G. Chem. Commun. 2005, 797. (d) Doi, T.; Yoshida,
(17) Data for compound 7: 1H NMR (CDCl3): δ = 7.30 (t, J = 5.6 Hz,
1 H), 7.80–7.84 (m, 2 H, overlapping), 7.91 (s, 1 H), 8.66 (d, J =
4.7 Hz, 1 H), 8.76 (s, 2 H), 10.20 (s, 2 H). 13C NMR (CDCl3): δ =
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 489–493