C O M M U N I C A T I O N S
Table 1. Enantioselective One-Pot Biginelli Reaction Catalyzed by
Chiral Lanthanide Triflates under Different Conditionsa
entry
Lewis acid
solvent
yield, %b
ee, %c
config.d
1
2
3
4
5
6
7
La(OTf)3
Sm(OTf)3
Yb(OTf)3
Yb(OTf)3
Yb(OTf)3
Yb(OTf)3
THF
THF
THF
CH2Cl2
CH3CN
CH3OH
THF
83
81
87
80
86
88
84
81
85
90
83
82
80
85
R
R
R
R
R
R
R
Figure 2. (a) Molecular model of the chiral catalyst Yb-2a. (b) Proposed
working model for the asymmetric Biginelli reaction catalyzef by Yb-2a
(other groups omitted for clarity).
e
In conclusion, a new catalytic approach to highly enantioselective
multicomponent Biginelli condensation using a recyclable chiral
Yb triflate with a novel hexadentate chiral ligand has been
developed. A wide range of optically active dihydropyrimidines
with remarkable pharmacological interest was obtained in high
yields with good to excellent enantioselectivities (up to 99% ee)
using this practical method under mild conditions. Further studies
on the utility of this catalyst in other asymmetric syntheses are
underway.
Yb(OTf)3
a All reactions were carried out at room temperature with catalyst loading
of 10 mol % unless otherwise noted. b Isolated yields. c The ee’s were
determined by HPLC with a Daicel Chiralcel OD-H column. d The absolute
configuration was determined by the comparison of the characteristic CD
spectra with DHPMs of known absolute configuration.11 e Catalyst loading
of 5 mol %.
Table 2. Enantioselective Three-component Biginelli
Dihydropyrimidines Synthesis Catalyzed by Yb-2aa
Acknowledgment. We gratefully acknowledge the National
Natural Science Foundation of China (20332050, 20472028) for
generous financial support.
Supporting Information Available: A complete description of
experimental details and characterization data. This material is available
References
(1) For reviews, see: (a) Ramo´n, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005,
44, 1602. (b) Ramachary, D. B.; Barbas, C. F., III. Chem. Eur. J. 2004,
10, 5323. (c) Denmark, S. E.; Fan, Y. J. Am. Chem. Soc. 2003, 125, 7825.
(d) Andreana, P. R.; Liu, C. C.; Schreiber, S. L. Org. Lett. 2004, 6, 4231.
(e) Cozzi, P. G.; Rivalta, E. Angew. Chem., Int. Ed. 2005, 44, 3600. (f)
Armstrong, R. W.; Combs, A. P.; Tempest, P. A.; Brown, S. D.; Keating,
T. A. Acc. Chem. Res. 1996, 29, 123. (g) Burke, M. D.; Schreiber, S. L.
Angew. Chem., Int. Ed. 2004, 43, 46.
(2) (a) Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360. (b) Kappe, C. O. Acc.
Chem. Res. 2000, 33, 879. (c) Lusch, M. J.; Tallarico, J. A. Org. Lett.
2004, 6, 3237.
(3) (a) Dihydropyrimidine calcium channel modulators. Atwal, K. S.; Swan-
son, B. N.; Unger, S. E.; Floyd, D. M.; Moreland, S.; Hedberg, A.;
O’Reilly, B. C. J. Med. Chem. 1991, 34, 806. (b) Kappe C. O. Eur. J.
Med. Chem. 2000, 35, 1043. (c) Kappe C. O. QSAR Comb. Sci. 2003, 22,
630.
(4) (a) Mayer, T. M.; Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber,
S. L.; Mitchison, T. J. Science 1999, 286, 971. (b) Kappe, C. O.; Shishkin,
O. V.; Uray, G.; Verdino, P. Tetrahedron 2000, 56, 1859.
(5) (a) Heys, L.; Moore, C. G.; Murphy, P. J. Chem. Soc. ReV. 2000, 29, 57.
(b) Barluenga, J.; Tomas, M.; Rubio, V.; Gotor, V. J. Chem. Commun.
1995, 1369. (c) Aron, Z. D.; Overman, L. E. Chem. Commun. 2004, 253.
(6) (a) Mun˜oz-Mun˜iz, O.; Juaristi, E. ArkiVoc 2003, xi, 16. (b) Lou, S.; Taoka,
B. M.; Ting, A.; Schaus, S. E. J. Am. Chem. Soc. 2005, 127, 11256.
(7) (a) Dondoni, A.; Massi, A.; Sabbatini, S.; Bertolasi, V. J. Org. Chem.
2002, 67, 6979. (b) Schnell, B.; Strauss, U. T.; Verdino, P.; Faber, K.;
Kappe, C. O. Tetrahedron: Asymmetry 2000, 11, 1449. (c) Dondoni, A.;
Massi, A.; Sabbatini, S. Tetrahedron Lett. 2002, 43, 5913. (d) Schnell,
B.; Krenn, W.; Faber, K.; Kappe, C. O. J. Chem. Soc., Perkin Trans. 1
2000, 4382.
a All reactions were performed on 0.5 mmol scale of substrates with 10
mol % of Yb-2a at room temperature. b Isolated yields. c The ee’s were
determined by HPLC with a Daicel Chiralcel OD-H or AD-H column.
d Determined by the comparison of the optical rotation values with
literature.7c,d e Assigned by the comparison of the characteristic CD spectra
with DHPMs of known absolute configuration.11
Scheme 2. Synthesis of (R)-SQ 32,926
(8) Kobayashi, S.; Sugiura, M.; Kitagawa, H.; Lam, W. W.-L. Chem. ReV.
2002, 102, 2227.
(9) (a) Hamada, T.; Manabe, K.; Ishikawa, S.; Nagayama, S.; Shiro, M.;
Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 2989. (b) Evans, D. A.;
Fandrick, K. R.; Song, H. J. J. Am. Chem. Soc. 2005, 127, 8942. (c) For
other kinds of lanthanide complexes as chiral catalysts, see: Shibasaki,
M.; Yoshikawa, N. Chem. ReV. 2002, 102, 2187.
(10) (a) Albanese, D.; Landini, D.; Penso, M.; Spano`, G.; Trebicka, A.
Tetrahedron 1995, 51, 5681. (b) Setyawati, I. A.; Liu, S.; Rettig, S. J.;
Orvig, C. Inorg. Chem. 2000, 39, 496.
(11) (a) Krenn, W.; Verdino, P.; Uray, G.; Faber, K.; Kappe, C. O. Chirality
1999, 11, 659. (b) Uray, G.; Verdino, P.; Belaj, F.; Kappe, C. O.; Fabian
W. M. F. J. Org. Chem. 2001, 66, 6685.
(12) See Supporting Information for a graphic illustration. Hashizume, T.;
Yonehara, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2000, 65, 5197.
(13) Molecular modeling calculation was performed using the MM+ force field
in the HyperChem 6.0 from Hypercube Inc., Gainesville, Florida.
and the possible structure of Yb-2a with molecular mechanics
computation is shown in Figure 2a.13 We propose a transition-state
model which explains the absolute configiration of the favored
enantiomer in the Biginelli reaction, as shown in Figure 2b. The in
situ generated acylimine intermediate could coordinate to the Yb
atom. The si-face of the coordinated acylimine was schielded by
the pyridyl group, allowing nucleophilic attack of the enol ester
from the re-face.
JA056092F
9
J. AM. CHEM. SOC. VOL. 127, NO. 47, 2005 16387