Palladium-Catalyzed Allylation of Pronucleophiles with Alkynes at 50 °C
FULL PAPER
Supporting Information (see footnote on the first page of this arti-
current catalytic system are not completely understood, we
cbelieve that the main reason for the rate enhancement
might be acceleration of the β-elimination.[9] Palladium
metal coordinated to a bulky ligand should act as good
leaving group in the β-elimination process to form phenyl-
allene (6) and subsequently π-allylpalladium complex 7.
The rate of transformation of 5 to 7 should thus increase,
which should in turn enhance the overall reaction rate.
cle). Experimental details, characterization data for newly synthe-
1
sized compounds 3g and 3h, H NMR spectra of all compounds.
Acknowledgments
N. T. P. thanks the Japan Society for the Promotion of Science
(JSPS) for a postdoctoral research fellowship.
[1] a) J. Tsuji, Transition Metal Reagents and Catalysts, Wiley, New
York, 2000, Chapter 4; b) M. Johannsen, K. A. Jorgensen,
Chem. Rev. 1998, 98, 1689–1708; c) B. M. Trost, D. L.
Van Vranken, Chem. Rev. 1996, 96, 395–422; d) A. Heumann,
M. Reglier, Tetrahedron 1995, 51, 975–1015; e) T. Hayashi, in:
Catalytic Asymmetric Synthesis (Ed.: I. Ojima), VCH, New
York, 1993; f) M. Sawamura, Y. Ito, Chem. Rev. 1992, 92, 857–
871; g) J. C. Fiaud, in: Metal-Promoted Selectivity in Organic
Synthesis (Eds.: M. Graziani, A. J. Hubert, A. F. Noels),
Kluwer Academic, Dordrecht, 1991; h) G. Consiglio, R. M.
Waymouth, Chem. Rev. 1989, 89, 257–276; i) B. M. Trost, J.
Org. Chem. 2004, 69, 5813–5837.
[2] Y. Yamamoto, U. Radhakrishnan, Chem. Soc. Rev. 1999, 28,
199–207 and references cited therein.
[3] a) B. M. Trost, Science 1991, 254, 1471–1477; b) B. M. Trost,
Angew. Chem. Int. Ed. Engl. 1995, 34, 259–281.
[4] a) I. Kadota, A. Shibuya, Y. S. Gyoung, Y. Yamamoto, J. Am.
Chem. Soc. 1998, 120, 10262–10263; b) N. T. Patil, I. Kadota,
A. Shibuya, Y. S. Gyoung, Y. Yamamoto, Adv. Synth. Catal.
2004, 346, 800–804; c) N. T. Patil, Y. Yamamoto, J. Org. Chem.
2004, 69, 6478–6481; d) N. T. Patil, H. Wu, I. Kadota, Y. Yam-
amoto, J. Org. Chem. 2004, 69, 8745–8750.
[5] a) I. Kadota, A. Shibuya, M. L. Lutete, Y. Yamamoto, J. Org.
Chem. 1999, 64, 4570–4571; b) M. L. Lutete, I. Kadota, A.
Shibuya, Y. Yamamoto, Heterocycles 2002, 58, 347–357; c)
M. L. Lutete, I. Kadota, Y. Yamamoto, J. Am. Chem. Soc.
2004, 126, 1622–1623; d) ref.[4d]; e) I. Kadota, M. L. Lutete, A.
Shibuya, Y. Yamamoto, Tetrahedron Lett. 2001, 42, 6207–6210;
f) G. B. Bajracharya, Z. Huo, Y. Yamamoto, J. Org. Chem.
2005, 70, 4883–4886. For a related reference, see; g) W. Zhang,
A. R. Haight, M. C. Hsu, Tetrahedron Lett. 2002, 43, 6575–
6578; h) B. M. Trost, W. Brieden, K. H. Baringhaus, Angew.
Chem. Int. Ed. Engl. 1992, 31, 1335–1336.
Figure 1. Plausible mechanism.
Conclusion
We have discovered a remarkable effect of 2-(dicyclohex-
ylphosphanyl)-2Ј-(dimethylamino)biphenyl as a ligand in
the palladium-catalyzed allylation of various pronucleo-
philes with alkynes at 50 °C and are now in a position to
allylate various pronucleophiles at 50 °C instead of 100 °C.
Potential applications of biphenyl ligands for cross-coupling
[6] N. T. Patil, N. F. Khan, Y. Yamamoto, Tetrahedron Lett. 2004,
45, 8497–8499.
[7] J. P. Wolfe, H. Tomori, J. P. Sadighi, J. Yin, S. L. Buchwald, J.
Org. Chem. 2000, 65, 1158–1174.
reactions are known,[10] but to the best of our knowledge [8] T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J.
Am. Chem. Soc. 2005, 127, 4685–4696.
the unique role of these ligands in accelerated palladium-
[9] Palladium-catalyzed isomerization of alkynes to allenes, see: a)
catalyzed reactions involving π-allylpalladium chemistry
H. Sheng, S. Lin, Y. Huang, Tetrahedron Lett. 1986, 27, 4893–
have not been reported until now.[11]
4894; b) B. M. Trost, T. Schmidt, J. Am. Chem. Soc. 1988, 110,
2301–2303; c) X. Lu, J. Ji, D. Ma, W. Shen, J. Org. Chem. 1991,
56, 5774–5778.
[10] For leading references, see: a) K. W. Anderson, M. Mendez-
Perez, J. Priego, S. L. Buchwald, J. Org. Chem. 2003, 68, 9563–
9573; b) A. V. Vorogushin, X. Huang, S. L. Buchwald, J. Am.
Chem. Soc. 2005, 127, 8146–8149; c) S.-i. Kuwabe, K. E. Tor-
Experimental Section
General Procedure: 1-Phenylprop-1-yne (2, 0.21 mmol) and 2-(dicy-
clohexylphosphanyl)-2Ј-(dimethylamino)biphenyl (I, 20 mol-%)
were added under argon to a toluene solution (1 ) of the pronu-
cleophile 1 (0.2 mmol), Pd2(dba)3·CHCl3 (5 mol-%), and benzoic
acid (10 mol-%). The solution was stirred at 50 °C in a screw-
capped vial until the disappearance of the starting material was
observed, the reaction mixture was cooled to room temperature,
filtered through a short silica gel pad, and concentrated, and the
residue was purified by column chromatography (silica gel, hexane/
AcOEt) to afford the allylation product 3 in good yield.
raca, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 12202–
12206; d) M. C. Harris, X. Huang, S. L. Buchwald, Org. Lett.
2002, 4, 2885–2888; e) K. E. Torraca, X. Huang, C. A. Parrish,
S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 10770–10771; f)
T. E. Barder, S. D. Walker, J. R. Martinelli, S. L. Buchwald, J.
Am. Chem. Soc. 2005, 127, 4685–4696.
[11] a) P. Dotta, P. G. A. Kumar, P. S. Pregosin, Organometallics
2004, 23, 4247–4254; b) P. Kocovsky, A. V. Malkov, S. Vyskocil,
G. C. Lloyd-Jones, Pure Appl. Chem. 1999, 71, 1425–1433.
Received: April 17, 2006
Published Online: July 19, 2006
Eur. J. Org. Chem. 2006, 4211–4213
© 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4213